Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting

Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-06, Vol.135 (26), p.n/a
Hauptverfasser: Kumar, Ram, Song, Yang, Ghoridi, Anissa, Boullay, Philippe, Rousse, Gwenaelle, Gervais, Christel, Coelho Diogo, Cristina, Kabbour, Houria, Sassoye, Capucine, Beaunier, Patricia, Castaing, Victor, Viana, Bruno, Luisa Ruiz Gonzalez, Maria, Calbet, José Gonzalez, Laberty‐Robert, Christel, Portehault, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Kumar, Ram
Song, Yang
Ghoridi, Anissa
Boullay, Philippe
Rousse, Gwenaelle
Gervais, Christel
Coelho Diogo, Cristina
Kabbour, Houria
Sassoye, Capucine
Beaunier, Patricia
Castaing, Victor
Viana, Bruno
Luisa Ruiz Gonzalez, Maria
Calbet, José Gonzalez
Laberty‐Robert, Christel
Portehault, David
description Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.
doi_str_mv 10.1002/ange.202303487
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04070975v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826535454</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1527-315fccd104f26e46721f3cb80f43c89f24ae0afb7241aebe587042a5e22abbea3</originalsourceid><addsrcrecordid>eNo9kctqGzEUhkVpoW6abdeCrgqdVFdrpjtj5wbOBZxQ6EacGZ_xKFUkV6M49S6P0Dfou_VJOsbFq8N_-Pg5h4-QD5ydcMbEFwgrPBFMSCZVaV6REdeCF9Jo85qMGFOqKIWq3pJ3ff_AGBsLU43In6voMwa6AJ_7vy-_Z8lthjhzfRM3mLY0thTobfSQ6JX7hcuBmQQXA5UzepbgEZ9j-kEh09whvYYQ-wY8fqXfg1o4cWOmXnym0w7SCuldgtCvY8oUwpLedjFH9NjkFBvI4LfZNfQbZEx0sfYuZxdW78mbFnyPx__nEbk_O72bXhTzm_PL6WRedMOXppBct02z5Ey1YoxqbARvZVOXrFWyKatWKEAGbW2E4oA16tIwJUCjEFDXCPKIfNr3duDtOrlHSFsbwdmLydzudkwxwyqjN3xgP-7ZdYo_n7DP9iE-pTCcZ0UpxlpqpdVAVXvq2XncHjo5sztbdmfLHmzZyfX56SHJf8j-jb8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826535454</pqid></control><display><type>article</type><title>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kumar, Ram ; Song, Yang ; Ghoridi, Anissa ; Boullay, Philippe ; Rousse, Gwenaelle ; Gervais, Christel ; Coelho Diogo, Cristina ; Kabbour, Houria ; Sassoye, Capucine ; Beaunier, Patricia ; Castaing, Victor ; Viana, Bruno ; Luisa Ruiz Gonzalez, Maria ; Calbet, José Gonzalez ; Laberty‐Robert, Christel ; Portehault, David</creator><creatorcontrib>Kumar, Ram ; Song, Yang ; Ghoridi, Anissa ; Boullay, Philippe ; Rousse, Gwenaelle ; Gervais, Christel ; Coelho Diogo, Cristina ; Kabbour, Houria ; Sassoye, Capucine ; Beaunier, Patricia ; Castaing, Victor ; Viana, Bruno ; Luisa Ruiz Gonzalez, Maria ; Calbet, José Gonzalez ; Laberty‐Robert, Christel ; Portehault, David</creatorcontrib><description>Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202303487</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anions ; Catalysis ; Charge transport ; Chemical compounds ; Chemical Sciences ; Chemistry ; Connectors ; Cristallography ; Crystallization ; Electron Crystallography ; Hole mobility ; Hydrogen evolution ; Low temperature ; Material chemistry ; Mixed Anions ; Molten Salts ; Nanotechnology ; Nanowires ; Oxidation ; Oxychloride ; Oxygen content ; Photoelectrocatalysis ; Thermal stability ; Transport properties ; Water splitting</subject><ispartof>Angewandte Chemie, 2023-06, Vol.135 (26), p.n/a</ispartof><rights>2023 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9081-3261 ; 0000-0002-8426-338X ; 0000-0001-8044-5306 ; 0000-0001-9921-0718 ; 0000-0003-4914-4913 ; 0000-0002-2867-8986 ; 0000-0001-8877-0015 ; 0000-0003-3546-2347 ; 0000-0003-2790-888X ; 0000-0002-6481-6506 ; 0000-0002-6546-8742 ; 0000-0003-3230-3164 ; 0000-0002-2959-862X ; 0000-0001-7450-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202303487$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202303487$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04070975$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ram</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ghoridi, Anissa</creatorcontrib><creatorcontrib>Boullay, Philippe</creatorcontrib><creatorcontrib>Rousse, Gwenaelle</creatorcontrib><creatorcontrib>Gervais, Christel</creatorcontrib><creatorcontrib>Coelho Diogo, Cristina</creatorcontrib><creatorcontrib>Kabbour, Houria</creatorcontrib><creatorcontrib>Sassoye, Capucine</creatorcontrib><creatorcontrib>Beaunier, Patricia</creatorcontrib><creatorcontrib>Castaing, Victor</creatorcontrib><creatorcontrib>Viana, Bruno</creatorcontrib><creatorcontrib>Luisa Ruiz Gonzalez, Maria</creatorcontrib><creatorcontrib>Calbet, José Gonzalez</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Portehault, David</creatorcontrib><title>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</title><title>Angewandte Chemie</title><description>Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.</description><subject>Anions</subject><subject>Catalysis</subject><subject>Charge transport</subject><subject>Chemical compounds</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Connectors</subject><subject>Cristallography</subject><subject>Crystallization</subject><subject>Electron Crystallography</subject><subject>Hole mobility</subject><subject>Hydrogen evolution</subject><subject>Low temperature</subject><subject>Material chemistry</subject><subject>Mixed Anions</subject><subject>Molten Salts</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Oxychloride</subject><subject>Oxygen content</subject><subject>Photoelectrocatalysis</subject><subject>Thermal stability</subject><subject>Transport properties</subject><subject>Water splitting</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kctqGzEUhkVpoW6abdeCrgqdVFdrpjtj5wbOBZxQ6EacGZ_xKFUkV6M49S6P0Dfou_VJOsbFq8N_-Pg5h4-QD5ydcMbEFwgrPBFMSCZVaV6REdeCF9Jo85qMGFOqKIWq3pJ3ff_AGBsLU43In6voMwa6AJ_7vy-_Z8lthjhzfRM3mLY0thTobfSQ6JX7hcuBmQQXA5UzepbgEZ9j-kEh09whvYYQ-wY8fqXfg1o4cWOmXnym0w7SCuldgtCvY8oUwpLedjFH9NjkFBvI4LfZNfQbZEx0sfYuZxdW78mbFnyPx__nEbk_O72bXhTzm_PL6WRedMOXppBct02z5Ey1YoxqbARvZVOXrFWyKatWKEAGbW2E4oA16tIwJUCjEFDXCPKIfNr3duDtOrlHSFsbwdmLydzudkwxwyqjN3xgP-7ZdYo_n7DP9iE-pTCcZ0UpxlpqpdVAVXvq2XncHjo5sztbdmfLHmzZyfX56SHJf8j-jb8</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Kumar, Ram</creator><creator>Song, Yang</creator><creator>Ghoridi, Anissa</creator><creator>Boullay, Philippe</creator><creator>Rousse, Gwenaelle</creator><creator>Gervais, Christel</creator><creator>Coelho Diogo, Cristina</creator><creator>Kabbour, Houria</creator><creator>Sassoye, Capucine</creator><creator>Beaunier, Patricia</creator><creator>Castaing, Victor</creator><creator>Viana, Bruno</creator><creator>Luisa Ruiz Gonzalez, Maria</creator><creator>Calbet, José Gonzalez</creator><creator>Laberty‐Robert, Christel</creator><creator>Portehault, David</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9081-3261</orcidid><orcidid>https://orcid.org/0000-0002-8426-338X</orcidid><orcidid>https://orcid.org/0000-0001-8044-5306</orcidid><orcidid>https://orcid.org/0000-0001-9921-0718</orcidid><orcidid>https://orcid.org/0000-0003-4914-4913</orcidid><orcidid>https://orcid.org/0000-0002-2867-8986</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0003-3546-2347</orcidid><orcidid>https://orcid.org/0000-0003-2790-888X</orcidid><orcidid>https://orcid.org/0000-0002-6481-6506</orcidid><orcidid>https://orcid.org/0000-0002-6546-8742</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><orcidid>https://orcid.org/0000-0002-2959-862X</orcidid><orcidid>https://orcid.org/0000-0001-7450-1738</orcidid></search><sort><creationdate>20230626</creationdate><title>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</title><author>Kumar, Ram ; Song, Yang ; Ghoridi, Anissa ; Boullay, Philippe ; Rousse, Gwenaelle ; Gervais, Christel ; Coelho Diogo, Cristina ; Kabbour, Houria ; Sassoye, Capucine ; Beaunier, Patricia ; Castaing, Victor ; Viana, Bruno ; Luisa Ruiz Gonzalez, Maria ; Calbet, José Gonzalez ; Laberty‐Robert, Christel ; Portehault, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1527-315fccd104f26e46721f3cb80f43c89f24ae0afb7241aebe587042a5e22abbea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anions</topic><topic>Catalysis</topic><topic>Charge transport</topic><topic>Chemical compounds</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Connectors</topic><topic>Cristallography</topic><topic>Crystallization</topic><topic>Electron Crystallography</topic><topic>Hole mobility</topic><topic>Hydrogen evolution</topic><topic>Low temperature</topic><topic>Material chemistry</topic><topic>Mixed Anions</topic><topic>Molten Salts</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Oxychloride</topic><topic>Oxygen content</topic><topic>Photoelectrocatalysis</topic><topic>Thermal stability</topic><topic>Transport properties</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ram</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ghoridi, Anissa</creatorcontrib><creatorcontrib>Boullay, Philippe</creatorcontrib><creatorcontrib>Rousse, Gwenaelle</creatorcontrib><creatorcontrib>Gervais, Christel</creatorcontrib><creatorcontrib>Coelho Diogo, Cristina</creatorcontrib><creatorcontrib>Kabbour, Houria</creatorcontrib><creatorcontrib>Sassoye, Capucine</creatorcontrib><creatorcontrib>Beaunier, Patricia</creatorcontrib><creatorcontrib>Castaing, Victor</creatorcontrib><creatorcontrib>Viana, Bruno</creatorcontrib><creatorcontrib>Luisa Ruiz Gonzalez, Maria</creatorcontrib><creatorcontrib>Calbet, José Gonzalez</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Portehault, David</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ram</au><au>Song, Yang</au><au>Ghoridi, Anissa</au><au>Boullay, Philippe</au><au>Rousse, Gwenaelle</au><au>Gervais, Christel</au><au>Coelho Diogo, Cristina</au><au>Kabbour, Houria</au><au>Sassoye, Capucine</au><au>Beaunier, Patricia</au><au>Castaing, Victor</au><au>Viana, Bruno</au><au>Luisa Ruiz Gonzalez, Maria</au><au>Calbet, José Gonzalez</au><au>Laberty‐Robert, Christel</au><au>Portehault, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-06-26</date><risdate>2023</risdate><volume>135</volume><issue>26</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202303487</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9081-3261</orcidid><orcidid>https://orcid.org/0000-0002-8426-338X</orcidid><orcidid>https://orcid.org/0000-0001-8044-5306</orcidid><orcidid>https://orcid.org/0000-0001-9921-0718</orcidid><orcidid>https://orcid.org/0000-0003-4914-4913</orcidid><orcidid>https://orcid.org/0000-0002-2867-8986</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0003-3546-2347</orcidid><orcidid>https://orcid.org/0000-0003-2790-888X</orcidid><orcidid>https://orcid.org/0000-0002-6481-6506</orcidid><orcidid>https://orcid.org/0000-0002-6546-8742</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><orcidid>https://orcid.org/0000-0002-2959-862X</orcidid><orcidid>https://orcid.org/0000-0001-7450-1738</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-06, Vol.135 (26), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_hal_primary_oai_HAL_hal_04070975v1
source Wiley Online Library - AutoHoldings Journals
subjects Anions
Catalysis
Charge transport
Chemical compounds
Chemical Sciences
Chemistry
Connectors
Cristallography
Crystallization
Electron Crystallography
Hole mobility
Hydrogen evolution
Low temperature
Material chemistry
Mixed Anions
Molten Salts
Nanotechnology
Nanowires
Oxidation
Oxychloride
Oxygen content
Photoelectrocatalysis
Thermal stability
Transport properties
Water splitting
title Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molten%20Salts%E2%80%90Driven%20Discovery%20of%20a%20Polar%20Mixed%E2%80%90Anion%203D%20Framework%20at%20the%20Nanoscale:%20Zn4Si2O7Cl2,%20Charge%20Transport%20and%20Photoelectrocatalytic%20Water%20Splitting&rft.jtitle=Angewandte%20Chemie&rft.au=Kumar,%20Ram&rft.date=2023-06-26&rft.volume=135&rft.issue=26&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202303487&rft_dat=%3Cproquest_hal_p%3E2826535454%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826535454&rft_id=info:pmid/&rfr_iscdi=true