Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting
Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during phot...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-06, Vol.135 (26), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Kumar, Ram Song, Yang Ghoridi, Anissa Boullay, Philippe Rousse, Gwenaelle Gervais, Christel Coelho Diogo, Cristina Kabbour, Houria Sassoye, Capucine Beaunier, Patricia Castaing, Victor Viana, Bruno Luisa Ruiz Gonzalez, Maria Calbet, José Gonzalez Laberty‐Robert, Christel Portehault, David |
description | Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids
Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water. |
doi_str_mv | 10.1002/ange.202303487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04070975v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826535454</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1527-315fccd104f26e46721f3cb80f43c89f24ae0afb7241aebe587042a5e22abbea3</originalsourceid><addsrcrecordid>eNo9kctqGzEUhkVpoW6abdeCrgqdVFdrpjtj5wbOBZxQ6EacGZ_xKFUkV6M49S6P0Dfou_VJOsbFq8N_-Pg5h4-QD5ydcMbEFwgrPBFMSCZVaV6REdeCF9Jo85qMGFOqKIWq3pJ3ff_AGBsLU43In6voMwa6AJ_7vy-_Z8lthjhzfRM3mLY0thTobfSQ6JX7hcuBmQQXA5UzepbgEZ9j-kEh09whvYYQ-wY8fqXfg1o4cWOmXnym0w7SCuldgtCvY8oUwpLedjFH9NjkFBvI4LfZNfQbZEx0sfYuZxdW78mbFnyPx__nEbk_O72bXhTzm_PL6WRedMOXppBct02z5Ey1YoxqbARvZVOXrFWyKatWKEAGbW2E4oA16tIwJUCjEFDXCPKIfNr3duDtOrlHSFsbwdmLydzudkwxwyqjN3xgP-7ZdYo_n7DP9iE-pTCcZ0UpxlpqpdVAVXvq2XncHjo5sztbdmfLHmzZyfX56SHJf8j-jb8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826535454</pqid></control><display><type>article</type><title>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kumar, Ram ; Song, Yang ; Ghoridi, Anissa ; Boullay, Philippe ; Rousse, Gwenaelle ; Gervais, Christel ; Coelho Diogo, Cristina ; Kabbour, Houria ; Sassoye, Capucine ; Beaunier, Patricia ; Castaing, Victor ; Viana, Bruno ; Luisa Ruiz Gonzalez, Maria ; Calbet, José Gonzalez ; Laberty‐Robert, Christel ; Portehault, David</creator><creatorcontrib>Kumar, Ram ; Song, Yang ; Ghoridi, Anissa ; Boullay, Philippe ; Rousse, Gwenaelle ; Gervais, Christel ; Coelho Diogo, Cristina ; Kabbour, Houria ; Sassoye, Capucine ; Beaunier, Patricia ; Castaing, Victor ; Viana, Bruno ; Luisa Ruiz Gonzalez, Maria ; Calbet, José Gonzalez ; Laberty‐Robert, Christel ; Portehault, David</creatorcontrib><description>Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids
Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202303487</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anions ; Catalysis ; Charge transport ; Chemical compounds ; Chemical Sciences ; Chemistry ; Connectors ; Cristallography ; Crystallization ; Electron Crystallography ; Hole mobility ; Hydrogen evolution ; Low temperature ; Material chemistry ; Mixed Anions ; Molten Salts ; Nanotechnology ; Nanowires ; Oxidation ; Oxychloride ; Oxygen content ; Photoelectrocatalysis ; Thermal stability ; Transport properties ; Water splitting</subject><ispartof>Angewandte Chemie, 2023-06, Vol.135 (26), p.n/a</ispartof><rights>2023 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9081-3261 ; 0000-0002-8426-338X ; 0000-0001-8044-5306 ; 0000-0001-9921-0718 ; 0000-0003-4914-4913 ; 0000-0002-2867-8986 ; 0000-0001-8877-0015 ; 0000-0003-3546-2347 ; 0000-0003-2790-888X ; 0000-0002-6481-6506 ; 0000-0002-6546-8742 ; 0000-0003-3230-3164 ; 0000-0002-2959-862X ; 0000-0001-7450-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202303487$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202303487$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04070975$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ram</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ghoridi, Anissa</creatorcontrib><creatorcontrib>Boullay, Philippe</creatorcontrib><creatorcontrib>Rousse, Gwenaelle</creatorcontrib><creatorcontrib>Gervais, Christel</creatorcontrib><creatorcontrib>Coelho Diogo, Cristina</creatorcontrib><creatorcontrib>Kabbour, Houria</creatorcontrib><creatorcontrib>Sassoye, Capucine</creatorcontrib><creatorcontrib>Beaunier, Patricia</creatorcontrib><creatorcontrib>Castaing, Victor</creatorcontrib><creatorcontrib>Viana, Bruno</creatorcontrib><creatorcontrib>Luisa Ruiz Gonzalez, Maria</creatorcontrib><creatorcontrib>Calbet, José Gonzalez</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Portehault, David</creatorcontrib><title>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</title><title>Angewandte Chemie</title><description>Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids
Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.</description><subject>Anions</subject><subject>Catalysis</subject><subject>Charge transport</subject><subject>Chemical compounds</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Connectors</subject><subject>Cristallography</subject><subject>Crystallization</subject><subject>Electron Crystallography</subject><subject>Hole mobility</subject><subject>Hydrogen evolution</subject><subject>Low temperature</subject><subject>Material chemistry</subject><subject>Mixed Anions</subject><subject>Molten Salts</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Oxychloride</subject><subject>Oxygen content</subject><subject>Photoelectrocatalysis</subject><subject>Thermal stability</subject><subject>Transport properties</subject><subject>Water splitting</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kctqGzEUhkVpoW6abdeCrgqdVFdrpjtj5wbOBZxQ6EacGZ_xKFUkV6M49S6P0Dfou_VJOsbFq8N_-Pg5h4-QD5ydcMbEFwgrPBFMSCZVaV6REdeCF9Jo85qMGFOqKIWq3pJ3ff_AGBsLU43In6voMwa6AJ_7vy-_Z8lthjhzfRM3mLY0thTobfSQ6JX7hcuBmQQXA5UzepbgEZ9j-kEh09whvYYQ-wY8fqXfg1o4cWOmXnym0w7SCuldgtCvY8oUwpLedjFH9NjkFBvI4LfZNfQbZEx0sfYuZxdW78mbFnyPx__nEbk_O72bXhTzm_PL6WRedMOXppBct02z5Ey1YoxqbARvZVOXrFWyKatWKEAGbW2E4oA16tIwJUCjEFDXCPKIfNr3duDtOrlHSFsbwdmLydzudkwxwyqjN3xgP-7ZdYo_n7DP9iE-pTCcZ0UpxlpqpdVAVXvq2XncHjo5sztbdmfLHmzZyfX56SHJf8j-jb8</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Kumar, Ram</creator><creator>Song, Yang</creator><creator>Ghoridi, Anissa</creator><creator>Boullay, Philippe</creator><creator>Rousse, Gwenaelle</creator><creator>Gervais, Christel</creator><creator>Coelho Diogo, Cristina</creator><creator>Kabbour, Houria</creator><creator>Sassoye, Capucine</creator><creator>Beaunier, Patricia</creator><creator>Castaing, Victor</creator><creator>Viana, Bruno</creator><creator>Luisa Ruiz Gonzalez, Maria</creator><creator>Calbet, José Gonzalez</creator><creator>Laberty‐Robert, Christel</creator><creator>Portehault, David</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9081-3261</orcidid><orcidid>https://orcid.org/0000-0002-8426-338X</orcidid><orcidid>https://orcid.org/0000-0001-8044-5306</orcidid><orcidid>https://orcid.org/0000-0001-9921-0718</orcidid><orcidid>https://orcid.org/0000-0003-4914-4913</orcidid><orcidid>https://orcid.org/0000-0002-2867-8986</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0003-3546-2347</orcidid><orcidid>https://orcid.org/0000-0003-2790-888X</orcidid><orcidid>https://orcid.org/0000-0002-6481-6506</orcidid><orcidid>https://orcid.org/0000-0002-6546-8742</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><orcidid>https://orcid.org/0000-0002-2959-862X</orcidid><orcidid>https://orcid.org/0000-0001-7450-1738</orcidid></search><sort><creationdate>20230626</creationdate><title>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</title><author>Kumar, Ram ; Song, Yang ; Ghoridi, Anissa ; Boullay, Philippe ; Rousse, Gwenaelle ; Gervais, Christel ; Coelho Diogo, Cristina ; Kabbour, Houria ; Sassoye, Capucine ; Beaunier, Patricia ; Castaing, Victor ; Viana, Bruno ; Luisa Ruiz Gonzalez, Maria ; Calbet, José Gonzalez ; Laberty‐Robert, Christel ; Portehault, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1527-315fccd104f26e46721f3cb80f43c89f24ae0afb7241aebe587042a5e22abbea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anions</topic><topic>Catalysis</topic><topic>Charge transport</topic><topic>Chemical compounds</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Connectors</topic><topic>Cristallography</topic><topic>Crystallization</topic><topic>Electron Crystallography</topic><topic>Hole mobility</topic><topic>Hydrogen evolution</topic><topic>Low temperature</topic><topic>Material chemistry</topic><topic>Mixed Anions</topic><topic>Molten Salts</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Oxychloride</topic><topic>Oxygen content</topic><topic>Photoelectrocatalysis</topic><topic>Thermal stability</topic><topic>Transport properties</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ram</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ghoridi, Anissa</creatorcontrib><creatorcontrib>Boullay, Philippe</creatorcontrib><creatorcontrib>Rousse, Gwenaelle</creatorcontrib><creatorcontrib>Gervais, Christel</creatorcontrib><creatorcontrib>Coelho Diogo, Cristina</creatorcontrib><creatorcontrib>Kabbour, Houria</creatorcontrib><creatorcontrib>Sassoye, Capucine</creatorcontrib><creatorcontrib>Beaunier, Patricia</creatorcontrib><creatorcontrib>Castaing, Victor</creatorcontrib><creatorcontrib>Viana, Bruno</creatorcontrib><creatorcontrib>Luisa Ruiz Gonzalez, Maria</creatorcontrib><creatorcontrib>Calbet, José Gonzalez</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><creatorcontrib>Portehault, David</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ram</au><au>Song, Yang</au><au>Ghoridi, Anissa</au><au>Boullay, Philippe</au><au>Rousse, Gwenaelle</au><au>Gervais, Christel</au><au>Coelho Diogo, Cristina</au><au>Kabbour, Houria</au><au>Sassoye, Capucine</au><au>Beaunier, Patricia</au><au>Castaing, Victor</au><au>Viana, Bruno</au><au>Luisa Ruiz Gonzalez, Maria</au><au>Calbet, José Gonzalez</au><au>Laberty‐Robert, Christel</au><au>Portehault, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-06-26</date><risdate>2023</risdate><volume>135</volume><issue>26</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Mixed‐anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4Si2O7Cl2. We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon‐based connectors from a non‐oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed‐anion solids
Nanowires of the new oxychloride Zn4Si2O7Cl2 crystallize from molten salts as a polar three‐dimensional tetrahedral framework. They exhibit strongly anisotropic charge carrier mobility, adjustable electrical properties, and photoelectrochemical properties for H2 production from water.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202303487</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9081-3261</orcidid><orcidid>https://orcid.org/0000-0002-8426-338X</orcidid><orcidid>https://orcid.org/0000-0001-8044-5306</orcidid><orcidid>https://orcid.org/0000-0001-9921-0718</orcidid><orcidid>https://orcid.org/0000-0003-4914-4913</orcidid><orcidid>https://orcid.org/0000-0002-2867-8986</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0003-3546-2347</orcidid><orcidid>https://orcid.org/0000-0003-2790-888X</orcidid><orcidid>https://orcid.org/0000-0002-6481-6506</orcidid><orcidid>https://orcid.org/0000-0002-6546-8742</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><orcidid>https://orcid.org/0000-0002-2959-862X</orcidid><orcidid>https://orcid.org/0000-0001-7450-1738</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-06, Vol.135 (26), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04070975v1 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Anions Catalysis Charge transport Chemical compounds Chemical Sciences Chemistry Connectors Cristallography Crystallization Electron Crystallography Hole mobility Hydrogen evolution Low temperature Material chemistry Mixed Anions Molten Salts Nanotechnology Nanowires Oxidation Oxychloride Oxygen content Photoelectrocatalysis Thermal stability Transport properties Water splitting |
title | Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molten%20Salts%E2%80%90Driven%20Discovery%20of%20a%20Polar%20Mixed%E2%80%90Anion%203D%20Framework%20at%20the%20Nanoscale:%20Zn4Si2O7Cl2,%20Charge%20Transport%20and%20Photoelectrocatalytic%20Water%20Splitting&rft.jtitle=Angewandte%20Chemie&rft.au=Kumar,%20Ram&rft.date=2023-06-26&rft.volume=135&rft.issue=26&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202303487&rft_dat=%3Cproquest_hal_p%3E2826535454%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826535454&rft_id=info:pmid/&rfr_iscdi=true |