Interplay between Conductivity, Matrix Relaxations and Composition of Ca‐Polyoxyethylene Polymer Electrolytes
In this report, the conductivity mechanism of Ca2+‐ion in polyoxyethylene (POE) solid polymer electrolytes (SPEs) for calcium secondary batteries is investigated by broadband electrical spectroscopy studies. SPEs are obtained by dissolving into the POE hosting matrix three different calcium salts: C...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2021-07, Vol.8 (13), p.2459-2466 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2466 |
---|---|
container_issue | 13 |
container_start_page | 2459 |
container_title | ChemElectroChem |
container_volume | 8 |
creator | Pagot, Gioele Vezzù, Keti Martinez‐Cisneros, Cynthia Susana Antonelli, Claire Levenfeld, Belen Varez, Alejandro Sanchez, Jean‐Yves Di Noto, Vito |
description | In this report, the conductivity mechanism of Ca2+‐ion in polyoxyethylene (POE) solid polymer electrolytes (SPEs) for calcium secondary batteries is investigated by broadband electrical spectroscopy studies. SPEs are obtained by dissolving into the POE hosting matrix three different calcium salts: CaTf2, Ca(TFSI)2 and CaI2. The investigation of the electric response of the synthetized SPEs reveals the presence in materials of two polarization phenomena and two dielectric relaxation events. It is demonstrated that the nature of the anion (i. e., steric hindrance, charge density and ability to act as coordination ligand) and the density of “dynamic crosslinks” of SPEs is fundamental in the establishment of ion‐ion/ion‐polymer interactions. The long‐range charge migration processes occurring along the two revealed percolation pathways of the electrolytes are generally coupled with the polymer host dynamics and depend on the temperature and the anion nature. This study offers the needed tools for understanding Ca2+ conduction in POE‐based electrolytes.
The Ca2+ long‐range charge migration processes occurring in polyoxyethylene‐based (POE) solid polymer electrolytes for Ca batteries are studied. The Ca‐salt anion induces the formation of weak “dynamic crosslinks” between POE chains that promote the interchain migration of Ca2+. The coupling between ion conductivity and polymer host dynamics is demonstrated and analyzed as a function of temperature and anion nature. |
doi_str_mv | 10.1002/celc.202100475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04069780v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552803551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3915-a73492f5f270660b1cd99834991d3f5d752dd112446c449b284636561e173bf83</originalsourceid><addsrcrecordid>eNqFkV9LwzAUxYsoOHSvPgd8EtxM0iZtHkeZbjBRRJ9D2t6yjqyZSfanb34EP6OfxJbK9M2ne8_hdy4XThBcETwmGNO7HHQ-ppi2IorZSTCgRPBRq_npn_08GDq3whgTglmY8EFg5rUHu9GqQRn4PUCNUlMX29xXu8o3t-hReVsd0AtodVC-MrVDqi5aaL0xruoMZEqUqq-Pz2ejG3NowC8bDTWgTq_BoqmG3NtWeHCXwVmptIPhz7wI3u6nr-lstHh6mKeTxSgPBWEjFYeRoCUraYw5xxnJCyGS1hOkCEtWxIwWBSE0ingeRSKjScRDzjgBEodZmYQXwU1_d6m03NhqrWwjjarkbLKQnYcjzEWc4B1p2eue3VjzvgXn5cpsbd2-JyljNMEhYx017qncGucslMezBMuuA9l1II8dtAHRB_aVhuYfWqbTRfqb_QYJBosY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552803551</pqid></control><display><type>article</type><title>Interplay between Conductivity, Matrix Relaxations and Composition of Ca‐Polyoxyethylene Polymer Electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pagot, Gioele ; Vezzù, Keti ; Martinez‐Cisneros, Cynthia Susana ; Antonelli, Claire ; Levenfeld, Belen ; Varez, Alejandro ; Sanchez, Jean‐Yves ; Di Noto, Vito</creator><creatorcontrib>Pagot, Gioele ; Vezzù, Keti ; Martinez‐Cisneros, Cynthia Susana ; Antonelli, Claire ; Levenfeld, Belen ; Varez, Alejandro ; Sanchez, Jean‐Yves ; Di Noto, Vito</creatorcontrib><description>In this report, the conductivity mechanism of Ca2+‐ion in polyoxyethylene (POE) solid polymer electrolytes (SPEs) for calcium secondary batteries is investigated by broadband electrical spectroscopy studies. SPEs are obtained by dissolving into the POE hosting matrix three different calcium salts: CaTf2, Ca(TFSI)2 and CaI2. The investigation of the electric response of the synthetized SPEs reveals the presence in materials of two polarization phenomena and two dielectric relaxation events. It is demonstrated that the nature of the anion (i. e., steric hindrance, charge density and ability to act as coordination ligand) and the density of “dynamic crosslinks” of SPEs is fundamental in the establishment of ion‐ion/ion‐polymer interactions. The long‐range charge migration processes occurring along the two revealed percolation pathways of the electrolytes are generally coupled with the polymer host dynamics and depend on the temperature and the anion nature. This study offers the needed tools for understanding Ca2+ conduction in POE‐based electrolytes.
The Ca2+ long‐range charge migration processes occurring in polyoxyethylene‐based (POE) solid polymer electrolytes for Ca batteries are studied. The Ca‐salt anion induces the formation of weak “dynamic crosslinks” between POE chains that promote the interchain migration of Ca2+. The coupling between ion conductivity and polymer host dynamics is demonstrated and analyzed as a function of temperature and anion nature.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202100475</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Anions ; Broadband ; broadband electrical spectroscopy ; calcium electrolytes ; Calcium ions ; Charge density ; Chemical Sciences ; conducting materials ; Dielectric relaxation ; Electrolytes ; energy conversion ; Molten salt electrolytes ; Percolation ; Polymers ; Polyoxyethylene ; Solid electrolytes ; solid polymer electrolytes ; Steric hindrance ; Storage batteries</subject><ispartof>ChemElectroChem, 2021-07, Vol.8 (13), p.2459-2466</ispartof><rights>2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3915-a73492f5f270660b1cd99834991d3f5d752dd112446c449b284636561e173bf83</citedby><cites>FETCH-LOGICAL-c3915-a73492f5f270660b1cd99834991d3f5d752dd112446c449b284636561e173bf83</cites><orcidid>0000-0002-8030-6979 ; 0000-0003-4156-7479 ; 0000-0002-8606-5520 ; 0000-0002-4015-6670 ; 0000-0003-3061-0312 ; 0000-0003-1840-4647 ; 0000-0002-8828-9915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202100475$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202100475$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04069780$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pagot, Gioele</creatorcontrib><creatorcontrib>Vezzù, Keti</creatorcontrib><creatorcontrib>Martinez‐Cisneros, Cynthia Susana</creatorcontrib><creatorcontrib>Antonelli, Claire</creatorcontrib><creatorcontrib>Levenfeld, Belen</creatorcontrib><creatorcontrib>Varez, Alejandro</creatorcontrib><creatorcontrib>Sanchez, Jean‐Yves</creatorcontrib><creatorcontrib>Di Noto, Vito</creatorcontrib><title>Interplay between Conductivity, Matrix Relaxations and Composition of Ca‐Polyoxyethylene Polymer Electrolytes</title><title>ChemElectroChem</title><description>In this report, the conductivity mechanism of Ca2+‐ion in polyoxyethylene (POE) solid polymer electrolytes (SPEs) for calcium secondary batteries is investigated by broadband electrical spectroscopy studies. SPEs are obtained by dissolving into the POE hosting matrix three different calcium salts: CaTf2, Ca(TFSI)2 and CaI2. The investigation of the electric response of the synthetized SPEs reveals the presence in materials of two polarization phenomena and two dielectric relaxation events. It is demonstrated that the nature of the anion (i. e., steric hindrance, charge density and ability to act as coordination ligand) and the density of “dynamic crosslinks” of SPEs is fundamental in the establishment of ion‐ion/ion‐polymer interactions. The long‐range charge migration processes occurring along the two revealed percolation pathways of the electrolytes are generally coupled with the polymer host dynamics and depend on the temperature and the anion nature. This study offers the needed tools for understanding Ca2+ conduction in POE‐based electrolytes.
The Ca2+ long‐range charge migration processes occurring in polyoxyethylene‐based (POE) solid polymer electrolytes for Ca batteries are studied. The Ca‐salt anion induces the formation of weak “dynamic crosslinks” between POE chains that promote the interchain migration of Ca2+. The coupling between ion conductivity and polymer host dynamics is demonstrated and analyzed as a function of temperature and anion nature.</description><subject>Anions</subject><subject>Broadband</subject><subject>broadband electrical spectroscopy</subject><subject>calcium electrolytes</subject><subject>Calcium ions</subject><subject>Charge density</subject><subject>Chemical Sciences</subject><subject>conducting materials</subject><subject>Dielectric relaxation</subject><subject>Electrolytes</subject><subject>energy conversion</subject><subject>Molten salt electrolytes</subject><subject>Percolation</subject><subject>Polymers</subject><subject>Polyoxyethylene</subject><subject>Solid electrolytes</subject><subject>solid polymer electrolytes</subject><subject>Steric hindrance</subject><subject>Storage batteries</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkV9LwzAUxYsoOHSvPgd8EtxM0iZtHkeZbjBRRJ9D2t6yjqyZSfanb34EP6OfxJbK9M2ne8_hdy4XThBcETwmGNO7HHQ-ppi2IorZSTCgRPBRq_npn_08GDq3whgTglmY8EFg5rUHu9GqQRn4PUCNUlMX29xXu8o3t-hReVsd0AtodVC-MrVDqi5aaL0xruoMZEqUqq-Pz2ejG3NowC8bDTWgTq_BoqmG3NtWeHCXwVmptIPhz7wI3u6nr-lstHh6mKeTxSgPBWEjFYeRoCUraYw5xxnJCyGS1hOkCEtWxIwWBSE0ingeRSKjScRDzjgBEodZmYQXwU1_d6m03NhqrWwjjarkbLKQnYcjzEWc4B1p2eue3VjzvgXn5cpsbd2-JyljNMEhYx017qncGucslMezBMuuA9l1II8dtAHRB_aVhuYfWqbTRfqb_QYJBosY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Pagot, Gioele</creator><creator>Vezzù, Keti</creator><creator>Martinez‐Cisneros, Cynthia Susana</creator><creator>Antonelli, Claire</creator><creator>Levenfeld, Belen</creator><creator>Varez, Alejandro</creator><creator>Sanchez, Jean‐Yves</creator><creator>Di Noto, Vito</creator><general>John Wiley & Sons, Inc</general><general>Weinheim : Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8030-6979</orcidid><orcidid>https://orcid.org/0000-0003-4156-7479</orcidid><orcidid>https://orcid.org/0000-0002-8606-5520</orcidid><orcidid>https://orcid.org/0000-0002-4015-6670</orcidid><orcidid>https://orcid.org/0000-0003-3061-0312</orcidid><orcidid>https://orcid.org/0000-0003-1840-4647</orcidid><orcidid>https://orcid.org/0000-0002-8828-9915</orcidid></search><sort><creationdate>20210701</creationdate><title>Interplay between Conductivity, Matrix Relaxations and Composition of Ca‐Polyoxyethylene Polymer Electrolytes</title><author>Pagot, Gioele ; Vezzù, Keti ; Martinez‐Cisneros, Cynthia Susana ; Antonelli, Claire ; Levenfeld, Belen ; Varez, Alejandro ; Sanchez, Jean‐Yves ; Di Noto, Vito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3915-a73492f5f270660b1cd99834991d3f5d752dd112446c449b284636561e173bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>Broadband</topic><topic>broadband electrical spectroscopy</topic><topic>calcium electrolytes</topic><topic>Calcium ions</topic><topic>Charge density</topic><topic>Chemical Sciences</topic><topic>conducting materials</topic><topic>Dielectric relaxation</topic><topic>Electrolytes</topic><topic>energy conversion</topic><topic>Molten salt electrolytes</topic><topic>Percolation</topic><topic>Polymers</topic><topic>Polyoxyethylene</topic><topic>Solid electrolytes</topic><topic>solid polymer electrolytes</topic><topic>Steric hindrance</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pagot, Gioele</creatorcontrib><creatorcontrib>Vezzù, Keti</creatorcontrib><creatorcontrib>Martinez‐Cisneros, Cynthia Susana</creatorcontrib><creatorcontrib>Antonelli, Claire</creatorcontrib><creatorcontrib>Levenfeld, Belen</creatorcontrib><creatorcontrib>Varez, Alejandro</creatorcontrib><creatorcontrib>Sanchez, Jean‐Yves</creatorcontrib><creatorcontrib>Di Noto, Vito</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pagot, Gioele</au><au>Vezzù, Keti</au><au>Martinez‐Cisneros, Cynthia Susana</au><au>Antonelli, Claire</au><au>Levenfeld, Belen</au><au>Varez, Alejandro</au><au>Sanchez, Jean‐Yves</au><au>Di Noto, Vito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Conductivity, Matrix Relaxations and Composition of Ca‐Polyoxyethylene Polymer Electrolytes</atitle><jtitle>ChemElectroChem</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>13</issue><spage>2459</spage><epage>2466</epage><pages>2459-2466</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>In this report, the conductivity mechanism of Ca2+‐ion in polyoxyethylene (POE) solid polymer electrolytes (SPEs) for calcium secondary batteries is investigated by broadband electrical spectroscopy studies. SPEs are obtained by dissolving into the POE hosting matrix three different calcium salts: CaTf2, Ca(TFSI)2 and CaI2. The investigation of the electric response of the synthetized SPEs reveals the presence in materials of two polarization phenomena and two dielectric relaxation events. It is demonstrated that the nature of the anion (i. e., steric hindrance, charge density and ability to act as coordination ligand) and the density of “dynamic crosslinks” of SPEs is fundamental in the establishment of ion‐ion/ion‐polymer interactions. The long‐range charge migration processes occurring along the two revealed percolation pathways of the electrolytes are generally coupled with the polymer host dynamics and depend on the temperature and the anion nature. This study offers the needed tools for understanding Ca2+ conduction in POE‐based electrolytes.
The Ca2+ long‐range charge migration processes occurring in polyoxyethylene‐based (POE) solid polymer electrolytes for Ca batteries are studied. The Ca‐salt anion induces the formation of weak “dynamic crosslinks” between POE chains that promote the interchain migration of Ca2+. The coupling between ion conductivity and polymer host dynamics is demonstrated and analyzed as a function of temperature and anion nature.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.202100475</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8030-6979</orcidid><orcidid>https://orcid.org/0000-0003-4156-7479</orcidid><orcidid>https://orcid.org/0000-0002-8606-5520</orcidid><orcidid>https://orcid.org/0000-0002-4015-6670</orcidid><orcidid>https://orcid.org/0000-0003-3061-0312</orcidid><orcidid>https://orcid.org/0000-0003-1840-4647</orcidid><orcidid>https://orcid.org/0000-0002-8828-9915</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2021-07, Vol.8 (13), p.2459-2466 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04069780v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anions Broadband broadband electrical spectroscopy calcium electrolytes Calcium ions Charge density Chemical Sciences conducting materials Dielectric relaxation Electrolytes energy conversion Molten salt electrolytes Percolation Polymers Polyoxyethylene Solid electrolytes solid polymer electrolytes Steric hindrance Storage batteries |
title | Interplay between Conductivity, Matrix Relaxations and Composition of Ca‐Polyoxyethylene Polymer Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Conductivity,%20Matrix%20Relaxations%20and%20Composition%20of%20Ca%E2%80%90Polyoxyethylene%20Polymer%20Electrolytes&rft.jtitle=ChemElectroChem&rft.au=Pagot,%20Gioele&rft.date=2021-07-01&rft.volume=8&rft.issue=13&rft.spage=2459&rft.epage=2466&rft.pages=2459-2466&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202100475&rft_dat=%3Cproquest_hal_p%3E2552803551%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552803551&rft_id=info:pmid/&rfr_iscdi=true |