Feasibility Study of Upper Limb Control Method Based on EMG-Angle Relation
The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion bas...
Gespeichert in:
Veröffentlicht in: | Journal of computational and nonlinear dynamics 2023, Vol.18 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of computational and nonlinear dynamics |
container_volume | 18 |
creator | Lento, Bianca Aoustin, Y Zielinska, Teresa |
description | The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations.In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the OpenSim simulator using real angular positions are examined. |
doi_str_mv | 10.1115/1.4056918 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04068422v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04068422v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04068422v13</originalsourceid><addsrcrecordid>eNqVirsKwjAUQIMo-Bz8g7s6VHNrUuqopSpSFx9zSWlqI7EpTRT69yKIu9M5HA4hU6RzROQLnDPKgxWGHTJAzrmHzF92f468T4bW3illbBXyATlspbAqU1q5Fs7umbdgCrjWtWwgUY8MIlO5xmg4SleaHDbCyhxMBfFx562rm5Zwklo4Zaox6RVCWzn5ckRm2_gS7b1S6LRu1EM0bWqESvfrJP00ymgQMt9_4fKf9w0qlUPz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Feasibility Study of Upper Limb Control Method Based on EMG-Angle Relation</title><source>ASME Digital Collection Journals</source><source>Alma/SFX Local Collection</source><creator>Lento, Bianca ; Aoustin, Y ; Zielinska, Teresa</creator><creatorcontrib>Lento, Bianca ; Aoustin, Y ; Zielinska, Teresa</creatorcontrib><description>The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations.In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the OpenSim simulator using real angular positions are examined.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4056918</identifier><language>eng</language><publisher>American Society of Mechanical Engineers (ASME)</publisher><subject>Biomechanics ; Computer Science ; Engineering Sciences ; Mechanics ; Neural and Evolutionary Computing</subject><ispartof>Journal of computational and nonlinear dynamics, 2023, Vol.18 (6)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3484-117X ; 0000-0001-9495-8364 ; 0000-0002-3484-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04068422$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lento, Bianca</creatorcontrib><creatorcontrib>Aoustin, Y</creatorcontrib><creatorcontrib>Zielinska, Teresa</creatorcontrib><title>Feasibility Study of Upper Limb Control Method Based on EMG-Angle Relation</title><title>Journal of computational and nonlinear dynamics</title><description>The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations.In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the OpenSim simulator using real angular positions are examined.</description><subject>Biomechanics</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Neural and Evolutionary Computing</subject><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVirsKwjAUQIMo-Bz8g7s6VHNrUuqopSpSFx9zSWlqI7EpTRT69yKIu9M5HA4hU6RzROQLnDPKgxWGHTJAzrmHzF92f468T4bW3illbBXyATlspbAqU1q5Fs7umbdgCrjWtWwgUY8MIlO5xmg4SleaHDbCyhxMBfFx562rm5Zwklo4Zaox6RVCWzn5ckRm2_gS7b1S6LRu1EM0bWqESvfrJP00ymgQMt9_4fKf9w0qlUPz</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lento, Bianca</creator><creator>Aoustin, Y</creator><creator>Zielinska, Teresa</creator><general>American Society of Mechanical Engineers (ASME)</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3484-117X</orcidid><orcidid>https://orcid.org/0000-0001-9495-8364</orcidid><orcidid>https://orcid.org/0000-0002-3484-117X</orcidid></search><sort><creationdate>2023</creationdate><title>Feasibility Study of Upper Limb Control Method Based on EMG-Angle Relation</title><author>Lento, Bianca ; Aoustin, Y ; Zielinska, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04068422v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanics</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Neural and Evolutionary Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lento, Bianca</creatorcontrib><creatorcontrib>Aoustin, Y</creatorcontrib><creatorcontrib>Zielinska, Teresa</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lento, Bianca</au><au>Aoustin, Y</au><au>Zielinska, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility Study of Upper Limb Control Method Based on EMG-Angle Relation</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><date>2023</date><risdate>2023</risdate><volume>18</volume><issue>6</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations.In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the OpenSim simulator using real angular positions are examined.</abstract><pub>American Society of Mechanical Engineers (ASME)</pub><doi>10.1115/1.4056918</doi><orcidid>https://orcid.org/0000-0002-3484-117X</orcidid><orcidid>https://orcid.org/0000-0001-9495-8364</orcidid><orcidid>https://orcid.org/0000-0002-3484-117X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-1415 |
ispartof | Journal of computational and nonlinear dynamics, 2023, Vol.18 (6) |
issn | 1555-1415 1555-1423 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04068422v1 |
source | ASME Digital Collection Journals; Alma/SFX Local Collection |
subjects | Biomechanics Computer Science Engineering Sciences Mechanics Neural and Evolutionary Computing |
title | Feasibility Study of Upper Limb Control Method Based on EMG-Angle Relation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20Study%20of%20Upper%20Limb%20Control%20Method%20Based%20on%20EMG-Angle%20Relation&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Lento,%20Bianca&rft.date=2023&rft.volume=18&rft.issue=6&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4056918&rft_dat=%3Chal%3Eoai_HAL_hal_04068422v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |