Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown
Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In th...
Gespeichert in:
Veröffentlicht in: | Chemistry, an Asian journal an Asian journal, 2022-12, Vol.17 (24), p.e202200888-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | e202200888 |
container_title | Chemistry, an Asian journal |
container_volume | 17 |
creator | Fujinami Tanimoto, Izadora Mayumi Zhang, Jiayi Cressiot, Benjamin Le Pioufle, Bruno Bacri, Laurent Pelta, Juan |
description | Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding.
Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains. |
doi_str_mv | 10.1002/asia.202200888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04068157v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773752795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</originalsourceid><addsrcrecordid>eNqFkc1OGzEURi0EIpSyZVlZYkMXCbZn_DPLaVKaSFG6gErdVJY942kMzji1Z0DZ9RF4Rp6kjgJBYtOVfe89PrrWB8A5RiOMELlS0aoRQYQgJIQ4ACdYMDzMOf55uL8TMQAfYrxDiBJUiGMwyFhG0pCdgF-TTatWtorQN3CyKOHtMvj-9xLeeGfr579PsVOdgQvV-rUPJsJrpYOtUq-GegPHvu2Cdy5VE2ucqbo0hF-CUfe1f2w_gqNGuWjOXs5T8OP66-14Opx__zYbl_NhlSMuhkrnimicG1azJstqzBnhQmmFWSVqbRqRCiLqIi8ozSmhRgtiNBYFqlhDeHYKPu-8S-XkOtiVChvplZXTci63PZQjJjDlDzixlzt2Hfyf3sROrmysjHOqNb6PMulwTgQlRUIv3qF3vg9t-kmieMYp4QVN1GhHVcHHGEyz3wAjuQ1JbkOS-5DSg08v2l6vTL3HX1NJQLEDHq0zm__oZHkzK9_k_wCRGZ2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773752795</pqid></control><display><type>article</type><title>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Fujinami Tanimoto, Izadora Mayumi ; Zhang, Jiayi ; Cressiot, Benjamin ; Le Pioufle, Bruno ; Bacri, Laurent ; Pelta, Juan</creator><creatorcontrib>Fujinami Tanimoto, Izadora Mayumi ; Zhang, Jiayi ; Cressiot, Benjamin ; Le Pioufle, Bruno ; Bacri, Laurent ; Pelta, Juan</creatorcontrib><description>Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding.
Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202200888</identifier><identifier>PMID: 36321866</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chains ; Chemical Sciences ; Chemistry ; controlled dielectric breakdown ; Dielectric breakdown ; DNA ; DNA translocation ; Dwell time ; Electric potential ; nanopore sensing ; Nanopores ; Nanotechnology - methods ; Nucleic acids ; solid-state nanopore ; Voltage</subject><ispartof>Chemistry, an Asian journal, 2022-12, Vol.17 (24), p.e202200888-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</citedby><cites>FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</cites><orcidid>0000-0002-0273-2200 ; 0000-0002-1896-4137 ; 0000-0001-9319-3152 ; 0000-0002-0010-2475 ; 0000-0002-1763-2456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasia.202200888$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasia.202200888$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36321866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04068157$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujinami Tanimoto, Izadora Mayumi</creatorcontrib><creatorcontrib>Zhang, Jiayi</creatorcontrib><creatorcontrib>Cressiot, Benjamin</creatorcontrib><creatorcontrib>Le Pioufle, Bruno</creatorcontrib><creatorcontrib>Bacri, Laurent</creatorcontrib><creatorcontrib>Pelta, Juan</creatorcontrib><title>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding.
Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.</description><subject>Chains</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>controlled dielectric breakdown</subject><subject>Dielectric breakdown</subject><subject>DNA</subject><subject>DNA translocation</subject><subject>Dwell time</subject><subject>Electric potential</subject><subject>nanopore sensing</subject><subject>Nanopores</subject><subject>Nanotechnology - methods</subject><subject>Nucleic acids</subject><subject>solid-state nanopore</subject><subject>Voltage</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1OGzEURi0EIpSyZVlZYkMXCbZn_DPLaVKaSFG6gErdVJY942kMzji1Z0DZ9RF4Rp6kjgJBYtOVfe89PrrWB8A5RiOMELlS0aoRQYQgJIQ4ACdYMDzMOf55uL8TMQAfYrxDiBJUiGMwyFhG0pCdgF-TTatWtorQN3CyKOHtMvj-9xLeeGfr579PsVOdgQvV-rUPJsJrpYOtUq-GegPHvu2Cdy5VE2ucqbo0hF-CUfe1f2w_gqNGuWjOXs5T8OP66-14Opx__zYbl_NhlSMuhkrnimicG1azJstqzBnhQmmFWSVqbRqRCiLqIi8ozSmhRgtiNBYFqlhDeHYKPu-8S-XkOtiVChvplZXTci63PZQjJjDlDzixlzt2Hfyf3sROrmysjHOqNb6PMulwTgQlRUIv3qF3vg9t-kmieMYp4QVN1GhHVcHHGEyz3wAjuQ1JbkOS-5DSg08v2l6vTL3HX1NJQLEDHq0zm__oZHkzK9_k_wCRGZ2A</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Fujinami Tanimoto, Izadora Mayumi</creator><creator>Zhang, Jiayi</creator><creator>Cressiot, Benjamin</creator><creator>Le Pioufle, Bruno</creator><creator>Bacri, Laurent</creator><creator>Pelta, Juan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0273-2200</orcidid><orcidid>https://orcid.org/0000-0002-1896-4137</orcidid><orcidid>https://orcid.org/0000-0001-9319-3152</orcidid><orcidid>https://orcid.org/0000-0002-0010-2475</orcidid><orcidid>https://orcid.org/0000-0002-1763-2456</orcidid></search><sort><creationdate>20221214</creationdate><title>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</title><author>Fujinami Tanimoto, Izadora Mayumi ; Zhang, Jiayi ; Cressiot, Benjamin ; Le Pioufle, Bruno ; Bacri, Laurent ; Pelta, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chains</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>controlled dielectric breakdown</topic><topic>Dielectric breakdown</topic><topic>DNA</topic><topic>DNA translocation</topic><topic>Dwell time</topic><topic>Electric potential</topic><topic>nanopore sensing</topic><topic>Nanopores</topic><topic>Nanotechnology - methods</topic><topic>Nucleic acids</topic><topic>solid-state nanopore</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujinami Tanimoto, Izadora Mayumi</creatorcontrib><creatorcontrib>Zhang, Jiayi</creatorcontrib><creatorcontrib>Cressiot, Benjamin</creatorcontrib><creatorcontrib>Le Pioufle, Bruno</creatorcontrib><creatorcontrib>Bacri, Laurent</creatorcontrib><creatorcontrib>Pelta, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujinami Tanimoto, Izadora Mayumi</au><au>Zhang, Jiayi</au><au>Cressiot, Benjamin</au><au>Le Pioufle, Bruno</au><au>Bacri, Laurent</au><au>Pelta, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>17</volume><issue>24</issue><spage>e202200888</spage><epage>n/a</epage><pages>e202200888-n/a</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding.
Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36321866</pmid><doi>10.1002/asia.202200888</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0273-2200</orcidid><orcidid>https://orcid.org/0000-0002-1896-4137</orcidid><orcidid>https://orcid.org/0000-0001-9319-3152</orcidid><orcidid>https://orcid.org/0000-0002-0010-2475</orcidid><orcidid>https://orcid.org/0000-0002-1763-2456</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-4728 |
ispartof | Chemistry, an Asian journal, 2022-12, Vol.17 (24), p.e202200888-n/a |
issn | 1861-4728 1861-471X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04068157v1 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Chains Chemical Sciences Chemistry controlled dielectric breakdown Dielectric breakdown DNA DNA translocation Dwell time Electric potential nanopore sensing Nanopores Nanotechnology - methods Nucleic acids solid-state nanopore Voltage |
title | Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20DNA%20Through%20Solid%E2%80%90state%20Nanopores%20Fabricated%20by%20Controlled%20Dielectric%20Breakdown&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Fujinami%20Tanimoto,%20Izadora%20Mayumi&rft.date=2022-12-14&rft.volume=17&rft.issue=24&rft.spage=e202200888&rft.epage=n/a&rft.pages=e202200888-n/a&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202200888&rft_dat=%3Cproquest_hal_p%3E2773752795%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773752795&rft_id=info:pmid/36321866&rfr_iscdi=true |