Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown

Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2022-12, Vol.17 (24), p.e202200888-n/a
Hauptverfasser: Fujinami Tanimoto, Izadora Mayumi, Zhang, Jiayi, Cressiot, Benjamin, Le Pioufle, Bruno, Bacri, Laurent, Pelta, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page e202200888
container_title Chemistry, an Asian journal
container_volume 17
creator Fujinami Tanimoto, Izadora Mayumi
Zhang, Jiayi
Cressiot, Benjamin
Le Pioufle, Bruno
Bacri, Laurent
Pelta, Juan
description Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding. Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.
doi_str_mv 10.1002/asia.202200888
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04068157v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773752795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</originalsourceid><addsrcrecordid>eNqFkc1OGzEURi0EIpSyZVlZYkMXCbZn_DPLaVKaSFG6gErdVJY942kMzji1Z0DZ9RF4Rp6kjgJBYtOVfe89PrrWB8A5RiOMELlS0aoRQYQgJIQ4ACdYMDzMOf55uL8TMQAfYrxDiBJUiGMwyFhG0pCdgF-TTatWtorQN3CyKOHtMvj-9xLeeGfr579PsVOdgQvV-rUPJsJrpYOtUq-GegPHvu2Cdy5VE2ucqbo0hF-CUfe1f2w_gqNGuWjOXs5T8OP66-14Opx__zYbl_NhlSMuhkrnimicG1azJstqzBnhQmmFWSVqbRqRCiLqIi8ozSmhRgtiNBYFqlhDeHYKPu-8S-XkOtiVChvplZXTci63PZQjJjDlDzixlzt2Hfyf3sROrmysjHOqNb6PMulwTgQlRUIv3qF3vg9t-kmieMYp4QVN1GhHVcHHGEyz3wAjuQ1JbkOS-5DSg08v2l6vTL3HX1NJQLEDHq0zm__oZHkzK9_k_wCRGZ2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773752795</pqid></control><display><type>article</type><title>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Fujinami Tanimoto, Izadora Mayumi ; Zhang, Jiayi ; Cressiot, Benjamin ; Le Pioufle, Bruno ; Bacri, Laurent ; Pelta, Juan</creator><creatorcontrib>Fujinami Tanimoto, Izadora Mayumi ; Zhang, Jiayi ; Cressiot, Benjamin ; Le Pioufle, Bruno ; Bacri, Laurent ; Pelta, Juan</creatorcontrib><description>Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding. Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202200888</identifier><identifier>PMID: 36321866</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chains ; Chemical Sciences ; Chemistry ; controlled dielectric breakdown ; Dielectric breakdown ; DNA ; DNA translocation ; Dwell time ; Electric potential ; nanopore sensing ; Nanopores ; Nanotechnology - methods ; Nucleic acids ; solid-state nanopore ; Voltage</subject><ispartof>Chemistry, an Asian journal, 2022-12, Vol.17 (24), p.e202200888-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</citedby><cites>FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</cites><orcidid>0000-0002-0273-2200 ; 0000-0002-1896-4137 ; 0000-0001-9319-3152 ; 0000-0002-0010-2475 ; 0000-0002-1763-2456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasia.202200888$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasia.202200888$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36321866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04068157$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujinami Tanimoto, Izadora Mayumi</creatorcontrib><creatorcontrib>Zhang, Jiayi</creatorcontrib><creatorcontrib>Cressiot, Benjamin</creatorcontrib><creatorcontrib>Le Pioufle, Bruno</creatorcontrib><creatorcontrib>Bacri, Laurent</creatorcontrib><creatorcontrib>Pelta, Juan</creatorcontrib><title>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding. Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.</description><subject>Chains</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>controlled dielectric breakdown</subject><subject>Dielectric breakdown</subject><subject>DNA</subject><subject>DNA translocation</subject><subject>Dwell time</subject><subject>Electric potential</subject><subject>nanopore sensing</subject><subject>Nanopores</subject><subject>Nanotechnology - methods</subject><subject>Nucleic acids</subject><subject>solid-state nanopore</subject><subject>Voltage</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1OGzEURi0EIpSyZVlZYkMXCbZn_DPLaVKaSFG6gErdVJY942kMzji1Z0DZ9RF4Rp6kjgJBYtOVfe89PrrWB8A5RiOMELlS0aoRQYQgJIQ4ACdYMDzMOf55uL8TMQAfYrxDiBJUiGMwyFhG0pCdgF-TTatWtorQN3CyKOHtMvj-9xLeeGfr579PsVOdgQvV-rUPJsJrpYOtUq-GegPHvu2Cdy5VE2ucqbo0hF-CUfe1f2w_gqNGuWjOXs5T8OP66-14Opx__zYbl_NhlSMuhkrnimicG1azJstqzBnhQmmFWSVqbRqRCiLqIi8ozSmhRgtiNBYFqlhDeHYKPu-8S-XkOtiVChvplZXTci63PZQjJjDlDzixlzt2Hfyf3sROrmysjHOqNb6PMulwTgQlRUIv3qF3vg9t-kmieMYp4QVN1GhHVcHHGEyz3wAjuQ1JbkOS-5DSg08v2l6vTL3HX1NJQLEDHq0zm__oZHkzK9_k_wCRGZ2A</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Fujinami Tanimoto, Izadora Mayumi</creator><creator>Zhang, Jiayi</creator><creator>Cressiot, Benjamin</creator><creator>Le Pioufle, Bruno</creator><creator>Bacri, Laurent</creator><creator>Pelta, Juan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0273-2200</orcidid><orcidid>https://orcid.org/0000-0002-1896-4137</orcidid><orcidid>https://orcid.org/0000-0001-9319-3152</orcidid><orcidid>https://orcid.org/0000-0002-0010-2475</orcidid><orcidid>https://orcid.org/0000-0002-1763-2456</orcidid></search><sort><creationdate>20221214</creationdate><title>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</title><author>Fujinami Tanimoto, Izadora Mayumi ; Zhang, Jiayi ; Cressiot, Benjamin ; Le Pioufle, Bruno ; Bacri, Laurent ; Pelta, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4078-ab4a2b14e6d6f33d176278aba16c8dbef88ab28d949554525eb82eb1890c6f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chains</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>controlled dielectric breakdown</topic><topic>Dielectric breakdown</topic><topic>DNA</topic><topic>DNA translocation</topic><topic>Dwell time</topic><topic>Electric potential</topic><topic>nanopore sensing</topic><topic>Nanopores</topic><topic>Nanotechnology - methods</topic><topic>Nucleic acids</topic><topic>solid-state nanopore</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujinami Tanimoto, Izadora Mayumi</creatorcontrib><creatorcontrib>Zhang, Jiayi</creatorcontrib><creatorcontrib>Cressiot, Benjamin</creatorcontrib><creatorcontrib>Le Pioufle, Bruno</creatorcontrib><creatorcontrib>Bacri, Laurent</creatorcontrib><creatorcontrib>Pelta, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujinami Tanimoto, Izadora Mayumi</au><au>Zhang, Jiayi</au><au>Cressiot, Benjamin</au><au>Le Pioufle, Bruno</au><au>Bacri, Laurent</au><au>Pelta, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>17</volume><issue>24</issue><spage>e202200888</spage><epage>n/a</epage><pages>e202200888-n/a</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid‐state nanopores in situ with size control in a simple, low‐cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double‐stranded DNAs using a solid‐state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding. Solid‐state nanopores, fabricated by a controlled dielectric breakdown technique, were used to probe the dynamics of entrance and transport of dsDNA chains.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36321866</pmid><doi>10.1002/asia.202200888</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0273-2200</orcidid><orcidid>https://orcid.org/0000-0002-1896-4137</orcidid><orcidid>https://orcid.org/0000-0001-9319-3152</orcidid><orcidid>https://orcid.org/0000-0002-0010-2475</orcidid><orcidid>https://orcid.org/0000-0002-1763-2456</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2022-12, Vol.17 (24), p.e202200888-n/a
issn 1861-4728
1861-471X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04068157v1
source MEDLINE; Access via Wiley Online Library
subjects Chains
Chemical Sciences
Chemistry
controlled dielectric breakdown
Dielectric breakdown
DNA
DNA translocation
Dwell time
Electric potential
nanopore sensing
Nanopores
Nanotechnology - methods
Nucleic acids
solid-state nanopore
Voltage
title Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20DNA%20Through%20Solid%E2%80%90state%20Nanopores%20Fabricated%20by%20Controlled%20Dielectric%20Breakdown&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Fujinami%20Tanimoto,%20Izadora%20Mayumi&rft.date=2022-12-14&rft.volume=17&rft.issue=24&rft.spage=e202200888&rft.epage=n/a&rft.pages=e202200888-n/a&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202200888&rft_dat=%3Cproquest_hal_p%3E2773752795%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773752795&rft_id=info:pmid/36321866&rfr_iscdi=true