Matrices of linear forms of constant rank from vector bundles on projective spaces

We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2024-01, Vol.436, p.109408, Article 109408
Hauptverfasser: Manivel, Laurent, Miró-Roig, Rosa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109408
container_title Advances in mathematics (New York. 1965)
container_volume 436
creator Manivel, Laurent
Miró-Roig, Rosa M.
description We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.
doi_str_mv 10.1016/j.aim.2023.109408
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04066797v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04066797v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-3a06fefda419c3bd25acc35554b6f3608b8a783ca9acf316d7c4f027aadd03d23</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMouK7-AG-5eug6SdqkPS6LusKKIHoO0zTB1rZZkrrgvzfdFU8z7_HeMHyE3DJYMWDyvlthO6w4cJF0lUN5RhZpgYxDyc_JAgBYViooL8lVjF2SVc6qBXl7wSm0xkbqHe3b0WKgzofhqI0f44TjRAOOX9QFP9CDNZMPtP4em34ujXQffJfM9mBp3GO6dE0uHPbR3vzNJfl4fHjfbLPd69PzZr3LDFf5lAkE6axrMP1hRN3wAo0RRVHktXRCQlmXqEphsELjBJONMrkDrhCbBkTDxZLcne5-Yq_3oR0w_GiPrd6ud3r2IAcpVaUOLGXZKWuCjzFY919goGeAutMJoJ4B6hNA8QuvYGVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matrices of linear forms of constant rank from vector bundles on projective spaces</title><source>Elsevier ScienceDirect Journals</source><creator>Manivel, Laurent ; Miró-Roig, Rosa M.</creator><creatorcontrib>Manivel, Laurent ; Miró-Roig, Rosa M.</creatorcontrib><description>We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2023.109408</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Algebraic Geometry ; Mathematics</subject><ispartof>Advances in mathematics (New York. 1965), 2024-01, Vol.436, p.109408, Article 109408</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-3a06fefda419c3bd25acc35554b6f3608b8a783ca9acf316d7c4f027aadd03d23</cites><orcidid>0000-0001-6235-454X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-04066797$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manivel, Laurent</creatorcontrib><creatorcontrib>Miró-Roig, Rosa M.</creatorcontrib><title>Matrices of linear forms of constant rank from vector bundles on projective spaces</title><title>Advances in mathematics (New York. 1965)</title><description>We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.</description><subject>Algebraic Geometry</subject><subject>Mathematics</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMouK7-AG-5eug6SdqkPS6LusKKIHoO0zTB1rZZkrrgvzfdFU8z7_HeMHyE3DJYMWDyvlthO6w4cJF0lUN5RhZpgYxDyc_JAgBYViooL8lVjF2SVc6qBXl7wSm0xkbqHe3b0WKgzofhqI0f44TjRAOOX9QFP9CDNZMPtP4em34ujXQffJfM9mBp3GO6dE0uHPbR3vzNJfl4fHjfbLPd69PzZr3LDFf5lAkE6axrMP1hRN3wAo0RRVHktXRCQlmXqEphsELjBJONMrkDrhCbBkTDxZLcne5-Yq_3oR0w_GiPrd6ud3r2IAcpVaUOLGXZKWuCjzFY919goGeAutMJoJ4B6hNA8QuvYGVw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Manivel, Laurent</creator><creator>Miró-Roig, Rosa M.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6235-454X</orcidid></search><sort><creationdate>202401</creationdate><title>Matrices of linear forms of constant rank from vector bundles on projective spaces</title><author>Manivel, Laurent ; Miró-Roig, Rosa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-3a06fefda419c3bd25acc35554b6f3608b8a783ca9acf316d7c4f027aadd03d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manivel, Laurent</creatorcontrib><creatorcontrib>Miró-Roig, Rosa M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manivel, Laurent</au><au>Miró-Roig, Rosa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrices of linear forms of constant rank from vector bundles on projective spaces</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>436</volume><spage>109408</spage><pages>109408-</pages><artnum>109408</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.</abstract><pub>Elsevier</pub><doi>10.1016/j.aim.2023.109408</doi><orcidid>https://orcid.org/0000-0001-6235-454X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2024-01, Vol.436, p.109408, Article 109408
issn 0001-8708
1090-2082
language eng
recordid cdi_hal_primary_oai_HAL_hal_04066797v1
source Elsevier ScienceDirect Journals
subjects Algebraic Geometry
Mathematics
title Matrices of linear forms of constant rank from vector bundles on projective spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrices%20of%20linear%20forms%20of%20constant%20rank%20from%20vector%20bundles%20on%20projective%20spaces&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Manivel,%20Laurent&rft.date=2024-01&rft.volume=436&rft.spage=109408&rft.pages=109408-&rft.artnum=109408&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2023.109408&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04066797v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true