Matrices of linear forms of constant rank from vector bundles on projective spaces
We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2024-01, Vol.436, p.109408, Article 109408 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109408 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 436 |
creator | Manivel, Laurent Miró-Roig, Rosa M. |
description | We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space. |
doi_str_mv | 10.1016/j.aim.2023.109408 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04066797v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04066797v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-3a06fefda419c3bd25acc35554b6f3608b8a783ca9acf316d7c4f027aadd03d23</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMouK7-AG-5eug6SdqkPS6LusKKIHoO0zTB1rZZkrrgvzfdFU8z7_HeMHyE3DJYMWDyvlthO6w4cJF0lUN5RhZpgYxDyc_JAgBYViooL8lVjF2SVc6qBXl7wSm0xkbqHe3b0WKgzofhqI0f44TjRAOOX9QFP9CDNZMPtP4em34ujXQffJfM9mBp3GO6dE0uHPbR3vzNJfl4fHjfbLPd69PzZr3LDFf5lAkE6axrMP1hRN3wAo0RRVHktXRCQlmXqEphsELjBJONMrkDrhCbBkTDxZLcne5-Yq_3oR0w_GiPrd6ud3r2IAcpVaUOLGXZKWuCjzFY919goGeAutMJoJ4B6hNA8QuvYGVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matrices of linear forms of constant rank from vector bundles on projective spaces</title><source>Elsevier ScienceDirect Journals</source><creator>Manivel, Laurent ; Miró-Roig, Rosa M.</creator><creatorcontrib>Manivel, Laurent ; Miró-Roig, Rosa M.</creatorcontrib><description>We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2023.109408</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Algebraic Geometry ; Mathematics</subject><ispartof>Advances in mathematics (New York. 1965), 2024-01, Vol.436, p.109408, Article 109408</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-3a06fefda419c3bd25acc35554b6f3608b8a783ca9acf316d7c4f027aadd03d23</cites><orcidid>0000-0001-6235-454X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-04066797$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manivel, Laurent</creatorcontrib><creatorcontrib>Miró-Roig, Rosa M.</creatorcontrib><title>Matrices of linear forms of constant rank from vector bundles on projective spaces</title><title>Advances in mathematics (New York. 1965)</title><description>We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.</description><subject>Algebraic Geometry</subject><subject>Mathematics</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMouK7-AG-5eug6SdqkPS6LusKKIHoO0zTB1rZZkrrgvzfdFU8z7_HeMHyE3DJYMWDyvlthO6w4cJF0lUN5RhZpgYxDyc_JAgBYViooL8lVjF2SVc6qBXl7wSm0xkbqHe3b0WKgzofhqI0f44TjRAOOX9QFP9CDNZMPtP4em34ujXQffJfM9mBp3GO6dE0uHPbR3vzNJfl4fHjfbLPd69PzZr3LDFf5lAkE6axrMP1hRN3wAo0RRVHktXRCQlmXqEphsELjBJONMrkDrhCbBkTDxZLcne5-Yq_3oR0w_GiPrd6ud3r2IAcpVaUOLGXZKWuCjzFY919goGeAutMJoJ4B6hNA8QuvYGVw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Manivel, Laurent</creator><creator>Miró-Roig, Rosa M.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6235-454X</orcidid></search><sort><creationdate>202401</creationdate><title>Matrices of linear forms of constant rank from vector bundles on projective spaces</title><author>Manivel, Laurent ; Miró-Roig, Rosa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-3a06fefda419c3bd25acc35554b6f3608b8a783ca9acf316d7c4f027aadd03d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manivel, Laurent</creatorcontrib><creatorcontrib>Miró-Roig, Rosa M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manivel, Laurent</au><au>Miró-Roig, Rosa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrices of linear forms of constant rank from vector bundles on projective spaces</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>436</volume><spage>109408</spage><pages>109408-</pages><artnum>109408</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.</abstract><pub>Elsevier</pub><doi>10.1016/j.aim.2023.109408</doi><orcidid>https://orcid.org/0000-0001-6235-454X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2024-01, Vol.436, p.109408, Article 109408 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04066797v1 |
source | Elsevier ScienceDirect Journals |
subjects | Algebraic Geometry Mathematics |
title | Matrices of linear forms of constant rank from vector bundles on projective spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrices%20of%20linear%20forms%20of%20constant%20rank%20from%20vector%20bundles%20on%20projective%20spaces&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Manivel,%20Laurent&rft.date=2024-01&rft.volume=436&rft.spage=109408&rft.pages=109408-&rft.artnum=109408&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2023.109408&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04066797v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |