Accuracy, realism and general applicability of European forest models
Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluatio...
Gespeichert in:
Veröffentlicht in: | Global change biology 2022-12, Vol.28 (23), p.6921-6943 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6943 |
---|---|
container_issue | 23 |
container_start_page | 6921 |
container_title | Global change biology |
container_volume | 28 |
creator | Mahnken, Mats Cailleret, Maxime Collalti, Alessio Trotta, Carlo Biondo, Corrado D'Andrea, Ettore Dalmonech, Daniela Marano, Gina Mäkelä, Annikki Minunno, Francesco Peltoniemi, Mikko Trotsiuk, Volodymyr Nadal‐Sala, Daniel Sabaté, Santiago Vallet, Patrick Aussenac, Raphaël Cameron, David R. Bohn, Friedrich J. Grote, Rüdiger Augustynczik, Andrey L. D. Yousefpour, Rasoul Huber, Nica Bugmann, Harald Merganičová, Katarina Merganic, Jan Valent, Peter Lasch‐Born, Petra Hartig, Florian Vega del Valle, Iliusi D. Volkholz, Jan Gutsch, Martin Matteucci, Giorgio Krejza, Jan Ibrom, Andreas Meesenburg, Henning Rötzer, Thomas Maaten‐Theunissen, Marieke Maaten, Ernst Reyer, Christopher P. O. |
description | Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi‐model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
In this study, we evaluated 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. Multiple models are available that excel according to our three proposed dimensions of model performance. In addition, w |
doi_str_mv | 10.1111/gcb.16384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04066667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731292514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3994-7c0973e319ae96554e56647bae25fbd487d6c6b515dd59ff04555cae8de8273f3</originalsourceid><addsrcrecordid>eNp10UtLxDAQB_Agiu-D36DgRcG6mebVHtdlfcCCFz2HNJ1qJdvUxCr77c26iwfBuSSEXzIT_oScAb2GVJMXW1-DZCXfIYfApMgLXsrd9V7wHCiwA3IU4xullBVU7pMDJgEUh-KQzKfWjsHY1VUW0LguLjPTN9kL9hiMy8wwuM6aunPdxyrzbTYfgx_Q9FnrA8aPbOkbdPGE7LXGRTzdrsfk-Xb-NLvPF493D7PpIresqniuLK0UQwaVwUoKwVFIyVVtsBBt3fBSNdLKWoBoGlG1LeVCCGuwbLAsFGvZMbncvPtqnB5CtzRhpb3p9P10oddnlFOZSn1CshcbOwT_PqZZ9bKLFp0zPfox6kKBUBVw4Ime_6Fvfgx9-klSDIqqED9q29wGH2PA9ncCoHqdg0456J8ckp1s7FfncPU_1Hezm82NbzqVhQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731292514</pqid></control><display><type>article</type><title>Accuracy, realism and general applicability of European forest models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mahnken, Mats ; Cailleret, Maxime ; Collalti, Alessio ; Trotta, Carlo ; Biondo, Corrado ; D'Andrea, Ettore ; Dalmonech, Daniela ; Marano, Gina ; Mäkelä, Annikki ; Minunno, Francesco ; Peltoniemi, Mikko ; Trotsiuk, Volodymyr ; Nadal‐Sala, Daniel ; Sabaté, Santiago ; Vallet, Patrick ; Aussenac, Raphaël ; Cameron, David R. ; Bohn, Friedrich J. ; Grote, Rüdiger ; Augustynczik, Andrey L. D. ; Yousefpour, Rasoul ; Huber, Nica ; Bugmann, Harald ; Merganičová, Katarina ; Merganic, Jan ; Valent, Peter ; Lasch‐Born, Petra ; Hartig, Florian ; Vega del Valle, Iliusi D. ; Volkholz, Jan ; Gutsch, Martin ; Matteucci, Giorgio ; Krejza, Jan ; Ibrom, Andreas ; Meesenburg, Henning ; Rötzer, Thomas ; Maaten‐Theunissen, Marieke ; Maaten, Ernst ; Reyer, Christopher P. O.</creator><creatorcontrib>Mahnken, Mats ; Cailleret, Maxime ; Collalti, Alessio ; Trotta, Carlo ; Biondo, Corrado ; D'Andrea, Ettore ; Dalmonech, Daniela ; Marano, Gina ; Mäkelä, Annikki ; Minunno, Francesco ; Peltoniemi, Mikko ; Trotsiuk, Volodymyr ; Nadal‐Sala, Daniel ; Sabaté, Santiago ; Vallet, Patrick ; Aussenac, Raphaël ; Cameron, David R. ; Bohn, Friedrich J. ; Grote, Rüdiger ; Augustynczik, Andrey L. D. ; Yousefpour, Rasoul ; Huber, Nica ; Bugmann, Harald ; Merganičová, Katarina ; Merganic, Jan ; Valent, Peter ; Lasch‐Born, Petra ; Hartig, Florian ; Vega del Valle, Iliusi D. ; Volkholz, Jan ; Gutsch, Martin ; Matteucci, Giorgio ; Krejza, Jan ; Ibrom, Andreas ; Meesenburg, Henning ; Rötzer, Thomas ; Maaten‐Theunissen, Marieke ; Maaten, Ernst ; Reyer, Christopher P. O.</creatorcontrib><description>Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi‐model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
In this study, we evaluated 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. Multiple models are available that excel according to our three proposed dimensions of model performance. In addition, we find that structural properties are modelled more accurately than carbon fluxes, more complex models are not necessarily more accurate, the model ensemble produces realistic results on average and model applicability is currently high.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.16384</identifier><identifier>PMID: 36117412</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Biodiversity and Ecology ; Carbon ; Climate change ; Climate change mitigation ; Climate models ; Climate prediction ; Dimensions ; eddy‐covariance ; Environmental gradient ; Environmental impact ; Environmental Sciences ; Fluxes ; Forests ; gap model ; Impact prediction ; Mitigation ; model ensemble ; model evaluation ; Plant species ; Primary production ; process‐based modeling ; Productivity ; Radiation ; Realism ; Systematic errors ; terrestrial carbon dynamics ; Vapor pressure ; Vapour pressure</subject><ispartof>Global change biology, 2022-12, Vol.28 (23), p.6921-6943</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3994-7c0973e319ae96554e56647bae25fbd487d6c6b515dd59ff04555cae8de8273f3</citedby><cites>FETCH-LOGICAL-c3994-7c0973e319ae96554e56647bae25fbd487d6c6b515dd59ff04555cae8de8273f3</cites><orcidid>0000-0001-9633-7350 ; 0000-0001-6893-6890 ; 0000-0002-7328-1187 ; 0000-0002-9755-8814 ; 0000-0002-4980-8487 ; 0000-0001-7109-273X ; 0000-0003-2600-984X ; 0000-0003-1067-1492 ; 0000-0001-8938-0908 ; 0000-0002-1341-921X ; 0000-0001-7017-6640 ; 0000-0002-3035-4737 ; 0000-0003-3780-7206 ; 0000-0002-1932-5011 ; 0000-0003-3604-8279 ; 0000-0001-6377-0262 ; 0000-0003-1191-4716 ; 0000-0001-6902-2257 ; 0000-0003-4380-7472 ; 0000-0002-5218-6682 ; 0000-0003-2649-9447 ; 0000-0002-2942-9180 ; 0000-0001-6561-1943 ; 0000-0002-5884-210X ; 0000-0002-7658-6402 ; 0000-0002-0935-6201 ; 0000-0003-2028-6969 ; 0000-0002-8363-656X ; 0000-0003-4233-0094 ; 0000-0001-6468-4411 ; 0000-0001-6905-8356 ; 0000-0002-6255-9059 ; 0000-0001-5513-5496 ; 0000-0001-5427-6836 ; 0000-0002-2533-3739 ; 0000-0003-1854-0761 ; 0000-0003-2475-2111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.16384$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.16384$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04066667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahnken, Mats</creatorcontrib><creatorcontrib>Cailleret, Maxime</creatorcontrib><creatorcontrib>Collalti, Alessio</creatorcontrib><creatorcontrib>Trotta, Carlo</creatorcontrib><creatorcontrib>Biondo, Corrado</creatorcontrib><creatorcontrib>D'Andrea, Ettore</creatorcontrib><creatorcontrib>Dalmonech, Daniela</creatorcontrib><creatorcontrib>Marano, Gina</creatorcontrib><creatorcontrib>Mäkelä, Annikki</creatorcontrib><creatorcontrib>Minunno, Francesco</creatorcontrib><creatorcontrib>Peltoniemi, Mikko</creatorcontrib><creatorcontrib>Trotsiuk, Volodymyr</creatorcontrib><creatorcontrib>Nadal‐Sala, Daniel</creatorcontrib><creatorcontrib>Sabaté, Santiago</creatorcontrib><creatorcontrib>Vallet, Patrick</creatorcontrib><creatorcontrib>Aussenac, Raphaël</creatorcontrib><creatorcontrib>Cameron, David R.</creatorcontrib><creatorcontrib>Bohn, Friedrich J.</creatorcontrib><creatorcontrib>Grote, Rüdiger</creatorcontrib><creatorcontrib>Augustynczik, Andrey L. D.</creatorcontrib><creatorcontrib>Yousefpour, Rasoul</creatorcontrib><creatorcontrib>Huber, Nica</creatorcontrib><creatorcontrib>Bugmann, Harald</creatorcontrib><creatorcontrib>Merganičová, Katarina</creatorcontrib><creatorcontrib>Merganic, Jan</creatorcontrib><creatorcontrib>Valent, Peter</creatorcontrib><creatorcontrib>Lasch‐Born, Petra</creatorcontrib><creatorcontrib>Hartig, Florian</creatorcontrib><creatorcontrib>Vega del Valle, Iliusi D.</creatorcontrib><creatorcontrib>Volkholz, Jan</creatorcontrib><creatorcontrib>Gutsch, Martin</creatorcontrib><creatorcontrib>Matteucci, Giorgio</creatorcontrib><creatorcontrib>Krejza, Jan</creatorcontrib><creatorcontrib>Ibrom, Andreas</creatorcontrib><creatorcontrib>Meesenburg, Henning</creatorcontrib><creatorcontrib>Rötzer, Thomas</creatorcontrib><creatorcontrib>Maaten‐Theunissen, Marieke</creatorcontrib><creatorcontrib>Maaten, Ernst</creatorcontrib><creatorcontrib>Reyer, Christopher P. O.</creatorcontrib><title>Accuracy, realism and general applicability of European forest models</title><title>Global change biology</title><description>Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi‐model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
In this study, we evaluated 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. Multiple models are available that excel according to our three proposed dimensions of model performance. In addition, we find that structural properties are modelled more accurately than carbon fluxes, more complex models are not necessarily more accurate, the model ensemble produces realistic results on average and model applicability is currently high.</description><subject>Accuracy</subject><subject>Biodiversity and Ecology</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Dimensions</subject><subject>eddy‐covariance</subject><subject>Environmental gradient</subject><subject>Environmental impact</subject><subject>Environmental Sciences</subject><subject>Fluxes</subject><subject>Forests</subject><subject>gap model</subject><subject>Impact prediction</subject><subject>Mitigation</subject><subject>model ensemble</subject><subject>model evaluation</subject><subject>Plant species</subject><subject>Primary production</subject><subject>process‐based modeling</subject><subject>Productivity</subject><subject>Radiation</subject><subject>Realism</subject><subject>Systematic errors</subject><subject>terrestrial carbon dynamics</subject><subject>Vapor pressure</subject><subject>Vapour pressure</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10UtLxDAQB_Agiu-D36DgRcG6mebVHtdlfcCCFz2HNJ1qJdvUxCr77c26iwfBuSSEXzIT_oScAb2GVJMXW1-DZCXfIYfApMgLXsrd9V7wHCiwA3IU4xullBVU7pMDJgEUh-KQzKfWjsHY1VUW0LguLjPTN9kL9hiMy8wwuM6aunPdxyrzbTYfgx_Q9FnrA8aPbOkbdPGE7LXGRTzdrsfk-Xb-NLvPF493D7PpIresqniuLK0UQwaVwUoKwVFIyVVtsBBt3fBSNdLKWoBoGlG1LeVCCGuwbLAsFGvZMbncvPtqnB5CtzRhpb3p9P10oddnlFOZSn1CshcbOwT_PqZZ9bKLFp0zPfox6kKBUBVw4Ime_6Fvfgx9-klSDIqqED9q29wGH2PA9ncCoHqdg0456J8ckp1s7FfncPU_1Hezm82NbzqVhQg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Mahnken, Mats</creator><creator>Cailleret, Maxime</creator><creator>Collalti, Alessio</creator><creator>Trotta, Carlo</creator><creator>Biondo, Corrado</creator><creator>D'Andrea, Ettore</creator><creator>Dalmonech, Daniela</creator><creator>Marano, Gina</creator><creator>Mäkelä, Annikki</creator><creator>Minunno, Francesco</creator><creator>Peltoniemi, Mikko</creator><creator>Trotsiuk, Volodymyr</creator><creator>Nadal‐Sala, Daniel</creator><creator>Sabaté, Santiago</creator><creator>Vallet, Patrick</creator><creator>Aussenac, Raphaël</creator><creator>Cameron, David R.</creator><creator>Bohn, Friedrich J.</creator><creator>Grote, Rüdiger</creator><creator>Augustynczik, Andrey L. D.</creator><creator>Yousefpour, Rasoul</creator><creator>Huber, Nica</creator><creator>Bugmann, Harald</creator><creator>Merganičová, Katarina</creator><creator>Merganic, Jan</creator><creator>Valent, Peter</creator><creator>Lasch‐Born, Petra</creator><creator>Hartig, Florian</creator><creator>Vega del Valle, Iliusi D.</creator><creator>Volkholz, Jan</creator><creator>Gutsch, Martin</creator><creator>Matteucci, Giorgio</creator><creator>Krejza, Jan</creator><creator>Ibrom, Andreas</creator><creator>Meesenburg, Henning</creator><creator>Rötzer, Thomas</creator><creator>Maaten‐Theunissen, Marieke</creator><creator>Maaten, Ernst</creator><creator>Reyer, Christopher P. O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9633-7350</orcidid><orcidid>https://orcid.org/0000-0001-6893-6890</orcidid><orcidid>https://orcid.org/0000-0002-7328-1187</orcidid><orcidid>https://orcid.org/0000-0002-9755-8814</orcidid><orcidid>https://orcid.org/0000-0002-4980-8487</orcidid><orcidid>https://orcid.org/0000-0001-7109-273X</orcidid><orcidid>https://orcid.org/0000-0003-2600-984X</orcidid><orcidid>https://orcid.org/0000-0003-1067-1492</orcidid><orcidid>https://orcid.org/0000-0001-8938-0908</orcidid><orcidid>https://orcid.org/0000-0002-1341-921X</orcidid><orcidid>https://orcid.org/0000-0001-7017-6640</orcidid><orcidid>https://orcid.org/0000-0002-3035-4737</orcidid><orcidid>https://orcid.org/0000-0003-3780-7206</orcidid><orcidid>https://orcid.org/0000-0002-1932-5011</orcidid><orcidid>https://orcid.org/0000-0003-3604-8279</orcidid><orcidid>https://orcid.org/0000-0001-6377-0262</orcidid><orcidid>https://orcid.org/0000-0003-1191-4716</orcidid><orcidid>https://orcid.org/0000-0001-6902-2257</orcidid><orcidid>https://orcid.org/0000-0003-4380-7472</orcidid><orcidid>https://orcid.org/0000-0002-5218-6682</orcidid><orcidid>https://orcid.org/0000-0003-2649-9447</orcidid><orcidid>https://orcid.org/0000-0002-2942-9180</orcidid><orcidid>https://orcid.org/0000-0001-6561-1943</orcidid><orcidid>https://orcid.org/0000-0002-5884-210X</orcidid><orcidid>https://orcid.org/0000-0002-7658-6402</orcidid><orcidid>https://orcid.org/0000-0002-0935-6201</orcidid><orcidid>https://orcid.org/0000-0003-2028-6969</orcidid><orcidid>https://orcid.org/0000-0002-8363-656X</orcidid><orcidid>https://orcid.org/0000-0003-4233-0094</orcidid><orcidid>https://orcid.org/0000-0001-6468-4411</orcidid><orcidid>https://orcid.org/0000-0001-6905-8356</orcidid><orcidid>https://orcid.org/0000-0002-6255-9059</orcidid><orcidid>https://orcid.org/0000-0001-5513-5496</orcidid><orcidid>https://orcid.org/0000-0001-5427-6836</orcidid><orcidid>https://orcid.org/0000-0002-2533-3739</orcidid><orcidid>https://orcid.org/0000-0003-1854-0761</orcidid><orcidid>https://orcid.org/0000-0003-2475-2111</orcidid></search><sort><creationdate>202212</creationdate><title>Accuracy, realism and general applicability of European forest models</title><author>Mahnken, Mats ; Cailleret, Maxime ; Collalti, Alessio ; Trotta, Carlo ; Biondo, Corrado ; D'Andrea, Ettore ; Dalmonech, Daniela ; Marano, Gina ; Mäkelä, Annikki ; Minunno, Francesco ; Peltoniemi, Mikko ; Trotsiuk, Volodymyr ; Nadal‐Sala, Daniel ; Sabaté, Santiago ; Vallet, Patrick ; Aussenac, Raphaël ; Cameron, David R. ; Bohn, Friedrich J. ; Grote, Rüdiger ; Augustynczik, Andrey L. D. ; Yousefpour, Rasoul ; Huber, Nica ; Bugmann, Harald ; Merganičová, Katarina ; Merganic, Jan ; Valent, Peter ; Lasch‐Born, Petra ; Hartig, Florian ; Vega del Valle, Iliusi D. ; Volkholz, Jan ; Gutsch, Martin ; Matteucci, Giorgio ; Krejza, Jan ; Ibrom, Andreas ; Meesenburg, Henning ; Rötzer, Thomas ; Maaten‐Theunissen, Marieke ; Maaten, Ernst ; Reyer, Christopher P. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3994-7c0973e319ae96554e56647bae25fbd487d6c6b515dd59ff04555cae8de8273f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Biodiversity and Ecology</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Dimensions</topic><topic>eddy‐covariance</topic><topic>Environmental gradient</topic><topic>Environmental impact</topic><topic>Environmental Sciences</topic><topic>Fluxes</topic><topic>Forests</topic><topic>gap model</topic><topic>Impact prediction</topic><topic>Mitigation</topic><topic>model ensemble</topic><topic>model evaluation</topic><topic>Plant species</topic><topic>Primary production</topic><topic>process‐based modeling</topic><topic>Productivity</topic><topic>Radiation</topic><topic>Realism</topic><topic>Systematic errors</topic><topic>terrestrial carbon dynamics</topic><topic>Vapor pressure</topic><topic>Vapour pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahnken, Mats</creatorcontrib><creatorcontrib>Cailleret, Maxime</creatorcontrib><creatorcontrib>Collalti, Alessio</creatorcontrib><creatorcontrib>Trotta, Carlo</creatorcontrib><creatorcontrib>Biondo, Corrado</creatorcontrib><creatorcontrib>D'Andrea, Ettore</creatorcontrib><creatorcontrib>Dalmonech, Daniela</creatorcontrib><creatorcontrib>Marano, Gina</creatorcontrib><creatorcontrib>Mäkelä, Annikki</creatorcontrib><creatorcontrib>Minunno, Francesco</creatorcontrib><creatorcontrib>Peltoniemi, Mikko</creatorcontrib><creatorcontrib>Trotsiuk, Volodymyr</creatorcontrib><creatorcontrib>Nadal‐Sala, Daniel</creatorcontrib><creatorcontrib>Sabaté, Santiago</creatorcontrib><creatorcontrib>Vallet, Patrick</creatorcontrib><creatorcontrib>Aussenac, Raphaël</creatorcontrib><creatorcontrib>Cameron, David R.</creatorcontrib><creatorcontrib>Bohn, Friedrich J.</creatorcontrib><creatorcontrib>Grote, Rüdiger</creatorcontrib><creatorcontrib>Augustynczik, Andrey L. D.</creatorcontrib><creatorcontrib>Yousefpour, Rasoul</creatorcontrib><creatorcontrib>Huber, Nica</creatorcontrib><creatorcontrib>Bugmann, Harald</creatorcontrib><creatorcontrib>Merganičová, Katarina</creatorcontrib><creatorcontrib>Merganic, Jan</creatorcontrib><creatorcontrib>Valent, Peter</creatorcontrib><creatorcontrib>Lasch‐Born, Petra</creatorcontrib><creatorcontrib>Hartig, Florian</creatorcontrib><creatorcontrib>Vega del Valle, Iliusi D.</creatorcontrib><creatorcontrib>Volkholz, Jan</creatorcontrib><creatorcontrib>Gutsch, Martin</creatorcontrib><creatorcontrib>Matteucci, Giorgio</creatorcontrib><creatorcontrib>Krejza, Jan</creatorcontrib><creatorcontrib>Ibrom, Andreas</creatorcontrib><creatorcontrib>Meesenburg, Henning</creatorcontrib><creatorcontrib>Rötzer, Thomas</creatorcontrib><creatorcontrib>Maaten‐Theunissen, Marieke</creatorcontrib><creatorcontrib>Maaten, Ernst</creatorcontrib><creatorcontrib>Reyer, Christopher P. O.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahnken, Mats</au><au>Cailleret, Maxime</au><au>Collalti, Alessio</au><au>Trotta, Carlo</au><au>Biondo, Corrado</au><au>D'Andrea, Ettore</au><au>Dalmonech, Daniela</au><au>Marano, Gina</au><au>Mäkelä, Annikki</au><au>Minunno, Francesco</au><au>Peltoniemi, Mikko</au><au>Trotsiuk, Volodymyr</au><au>Nadal‐Sala, Daniel</au><au>Sabaté, Santiago</au><au>Vallet, Patrick</au><au>Aussenac, Raphaël</au><au>Cameron, David R.</au><au>Bohn, Friedrich J.</au><au>Grote, Rüdiger</au><au>Augustynczik, Andrey L. D.</au><au>Yousefpour, Rasoul</au><au>Huber, Nica</au><au>Bugmann, Harald</au><au>Merganičová, Katarina</au><au>Merganic, Jan</au><au>Valent, Peter</au><au>Lasch‐Born, Petra</au><au>Hartig, Florian</au><au>Vega del Valle, Iliusi D.</au><au>Volkholz, Jan</au><au>Gutsch, Martin</au><au>Matteucci, Giorgio</au><au>Krejza, Jan</au><au>Ibrom, Andreas</au><au>Meesenburg, Henning</au><au>Rötzer, Thomas</au><au>Maaten‐Theunissen, Marieke</au><au>Maaten, Ernst</au><au>Reyer, Christopher P. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy, realism and general applicability of European forest models</atitle><jtitle>Global change biology</jtitle><date>2022-12</date><risdate>2022</risdate><volume>28</volume><issue>23</issue><spage>6921</spage><epage>6943</epage><pages>6921-6943</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi‐model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
In this study, we evaluated 13 widely used, state‐of‐the‐art, stand‐scale forest models against field measurements of forest structure and eddy‐covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. Multiple models are available that excel according to our three proposed dimensions of model performance. In addition, we find that structural properties are modelled more accurately than carbon fluxes, more complex models are not necessarily more accurate, the model ensemble produces realistic results on average and model applicability is currently high.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>36117412</pmid><doi>10.1111/gcb.16384</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9633-7350</orcidid><orcidid>https://orcid.org/0000-0001-6893-6890</orcidid><orcidid>https://orcid.org/0000-0002-7328-1187</orcidid><orcidid>https://orcid.org/0000-0002-9755-8814</orcidid><orcidid>https://orcid.org/0000-0002-4980-8487</orcidid><orcidid>https://orcid.org/0000-0001-7109-273X</orcidid><orcidid>https://orcid.org/0000-0003-2600-984X</orcidid><orcidid>https://orcid.org/0000-0003-1067-1492</orcidid><orcidid>https://orcid.org/0000-0001-8938-0908</orcidid><orcidid>https://orcid.org/0000-0002-1341-921X</orcidid><orcidid>https://orcid.org/0000-0001-7017-6640</orcidid><orcidid>https://orcid.org/0000-0002-3035-4737</orcidid><orcidid>https://orcid.org/0000-0003-3780-7206</orcidid><orcidid>https://orcid.org/0000-0002-1932-5011</orcidid><orcidid>https://orcid.org/0000-0003-3604-8279</orcidid><orcidid>https://orcid.org/0000-0001-6377-0262</orcidid><orcidid>https://orcid.org/0000-0003-1191-4716</orcidid><orcidid>https://orcid.org/0000-0001-6902-2257</orcidid><orcidid>https://orcid.org/0000-0003-4380-7472</orcidid><orcidid>https://orcid.org/0000-0002-5218-6682</orcidid><orcidid>https://orcid.org/0000-0003-2649-9447</orcidid><orcidid>https://orcid.org/0000-0002-2942-9180</orcidid><orcidid>https://orcid.org/0000-0001-6561-1943</orcidid><orcidid>https://orcid.org/0000-0002-5884-210X</orcidid><orcidid>https://orcid.org/0000-0002-7658-6402</orcidid><orcidid>https://orcid.org/0000-0002-0935-6201</orcidid><orcidid>https://orcid.org/0000-0003-2028-6969</orcidid><orcidid>https://orcid.org/0000-0002-8363-656X</orcidid><orcidid>https://orcid.org/0000-0003-4233-0094</orcidid><orcidid>https://orcid.org/0000-0001-6468-4411</orcidid><orcidid>https://orcid.org/0000-0001-6905-8356</orcidid><orcidid>https://orcid.org/0000-0002-6255-9059</orcidid><orcidid>https://orcid.org/0000-0001-5513-5496</orcidid><orcidid>https://orcid.org/0000-0001-5427-6836</orcidid><orcidid>https://orcid.org/0000-0002-2533-3739</orcidid><orcidid>https://orcid.org/0000-0003-1854-0761</orcidid><orcidid>https://orcid.org/0000-0003-2475-2111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2022-12, Vol.28 (23), p.6921-6943 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04066667v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Biodiversity and Ecology Carbon Climate change Climate change mitigation Climate models Climate prediction Dimensions eddy‐covariance Environmental gradient Environmental impact Environmental Sciences Fluxes Forests gap model Impact prediction Mitigation model ensemble model evaluation Plant species Primary production process‐based modeling Productivity Radiation Realism Systematic errors terrestrial carbon dynamics Vapor pressure Vapour pressure |
title | Accuracy, realism and general applicability of European forest models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy,%20realism%20and%20general%20applicability%20of%20European%20forest%20models&rft.jtitle=Global%20change%20biology&rft.au=Mahnken,%20Mats&rft.date=2022-12&rft.volume=28&rft.issue=23&rft.spage=6921&rft.epage=6943&rft.pages=6921-6943&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.16384&rft_dat=%3Cproquest_hal_p%3E2731292514%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731292514&rft_id=info:pmid/36117412&rfr_iscdi=true |