Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection

SUMMARY Secondary microseisms are caused by nonlinear interactions between ocean waves of approximately equal wavelengths and opposite propagation directions. This seismic forcing is evaluated using ocean sea-state hindcast data and further modulated by the bathymetric effect. The numerical ocean mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2023-08, Vol.234 (2), p.933-947
Hauptverfasser: Zhang, R, Boué, P, Campillo, M, Ma, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 2
container_start_page 933
container_title Geophysical journal international
container_volume 234
creator Zhang, R
Boué, P
Campillo, M
Ma, J
description SUMMARY Secondary microseisms are caused by nonlinear interactions between ocean waves of approximately equal wavelengths and opposite propagation directions. This seismic forcing is evaluated using ocean sea-state hindcast data and further modulated by the bathymetric effect. The numerical ocean model provides a global activity representation of the secondary microseisms, from which we isolate major events. We backprojected teleseismic P-wave propagation into the Earth's mantle to validate these events as effective seismic sources. The ocean model provides spectral amplitude information for modelling microseisms generated seismic wavefield. A comparison of the backprojection for P and PP phases from observed and synthetic microseisms forcing indicates high reliability in the ocean model, at least for major sources. A combination of P and PP phases detected across a global network of stations enables global ocean coverage. We improve backprojection images even further by introducing a two-step stacking for the P phase to address the problem of unbalanced station distribution. Thresholds of microseisms events forces valuable for seismic imaging are determined by comparing backprojections and ocean models for the years 2015 and 2020. Finally, we extracted a catalogue of microseisms events every 3-hr from 1994 to 2020 from the ocean hindcast data set. This catalogue is an intriguing resource for future applications of interferometric imaging at large scale.
doi_str_mv 10.1093/gji/ggad103
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04066397v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggad103</oup_id><sourcerecordid>10.1093/gji/ggad103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-1f81c7e53ff0c4d222e16c839a9d5eca3a722cf59bceee287ad12f2ec539da213</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZP_oE9CSKx-5FPb6WoFQoqKPQWpruzcWuSDdk00n9vQotHT8MMzzvwPoRcc3bPWSZnxdbOigI0Z_KETLiMo0CE8fqUTFgWxUEUsvU5ufB-yxgPeZhOCL7voO6s2du6oG_BD_RIPSpXa2j3tLKqdR6trzzFHuvOP1CgylUNtNa7mjpD3cZj26OmUGtaOY1lOSwbUN9N67aoOuvqS3JmoPR4dZxT8vn0-LFYBqvX55fFfBWAFLwLuEm5SjCSxjAVaiEE8lilMoNMR6hAQiKEMlG2UYgo0mRoKoxAFclMg-BySm4Pf7-gzJvWVkOJ3IHNl_NVPt5YyOJYZkk_sncHdqzoWzR_Ac7y0WY-2MyPNgf65kC7XfMv-AuLA3iU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection</title><source>Oxford Journals Open Access Collection</source><creator>Zhang, R ; Boué, P ; Campillo, M ; Ma, J</creator><creatorcontrib>Zhang, R ; Boué, P ; Campillo, M ; Ma, J</creatorcontrib><description>SUMMARY Secondary microseisms are caused by nonlinear interactions between ocean waves of approximately equal wavelengths and opposite propagation directions. This seismic forcing is evaluated using ocean sea-state hindcast data and further modulated by the bathymetric effect. The numerical ocean model provides a global activity representation of the secondary microseisms, from which we isolate major events. We backprojected teleseismic P-wave propagation into the Earth's mantle to validate these events as effective seismic sources. The ocean model provides spectral amplitude information for modelling microseisms generated seismic wavefield. A comparison of the backprojection for P and PP phases from observed and synthetic microseisms forcing indicates high reliability in the ocean model, at least for major sources. A combination of P and PP phases detected across a global network of stations enables global ocean coverage. We improve backprojection images even further by introducing a two-step stacking for the P phase to address the problem of unbalanced station distribution. Thresholds of microseisms events forces valuable for seismic imaging are determined by comparing backprojections and ocean models for the years 2015 and 2020. Finally, we extracted a catalogue of microseisms events every 3-hr from 1994 to 2020 from the ocean hindcast data set. This catalogue is an intriguing resource for future applications of interferometric imaging at large scale.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggad103</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Earth Sciences ; Geophysics ; Sciences of the Universe</subject><ispartof>Geophysical journal international, 2023-08, Vol.234 (2), p.933-947</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-1f81c7e53ff0c4d222e16c839a9d5eca3a722cf59bceee287ad12f2ec539da213</citedby><cites>FETCH-LOGICAL-a321t-1f81c7e53ff0c4d222e16c839a9d5eca3a722cf59bceee287ad12f2ec539da213</cites><orcidid>0000-0002-9803-0763 ; 0000-0001-6971-4499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggad103$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-04066397$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, R</creatorcontrib><creatorcontrib>Boué, P</creatorcontrib><creatorcontrib>Campillo, M</creatorcontrib><creatorcontrib>Ma, J</creatorcontrib><title>Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection</title><title>Geophysical journal international</title><description>SUMMARY Secondary microseisms are caused by nonlinear interactions between ocean waves of approximately equal wavelengths and opposite propagation directions. This seismic forcing is evaluated using ocean sea-state hindcast data and further modulated by the bathymetric effect. The numerical ocean model provides a global activity representation of the secondary microseisms, from which we isolate major events. We backprojected teleseismic P-wave propagation into the Earth's mantle to validate these events as effective seismic sources. The ocean model provides spectral amplitude information for modelling microseisms generated seismic wavefield. A comparison of the backprojection for P and PP phases from observed and synthetic microseisms forcing indicates high reliability in the ocean model, at least for major sources. A combination of P and PP phases detected across a global network of stations enables global ocean coverage. We improve backprojection images even further by introducing a two-step stacking for the P phase to address the problem of unbalanced station distribution. Thresholds of microseisms events forces valuable for seismic imaging are determined by comparing backprojections and ocean models for the years 2015 and 2020. Finally, we extracted a catalogue of microseisms events every 3-hr from 1994 to 2020 from the ocean hindcast data set. This catalogue is an intriguing resource for future applications of interferometric imaging at large scale.</description><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Sciences of the Universe</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZP_oE9CSKx-5FPb6WoFQoqKPQWpruzcWuSDdk00n9vQotHT8MMzzvwPoRcc3bPWSZnxdbOigI0Z_KETLiMo0CE8fqUTFgWxUEUsvU5ufB-yxgPeZhOCL7voO6s2du6oG_BD_RIPSpXa2j3tLKqdR6trzzFHuvOP1CgylUNtNa7mjpD3cZj26OmUGtaOY1lOSwbUN9N67aoOuvqS3JmoPR4dZxT8vn0-LFYBqvX55fFfBWAFLwLuEm5SjCSxjAVaiEE8lilMoNMR6hAQiKEMlG2UYgo0mRoKoxAFclMg-BySm4Pf7-gzJvWVkOJ3IHNl_NVPt5YyOJYZkk_sncHdqzoWzR_Ac7y0WY-2MyPNgf65kC7XfMv-AuLA3iU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, R</creator><creator>Boué, P</creator><creator>Campillo, M</creator><creator>Ma, J</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9803-0763</orcidid><orcidid>https://orcid.org/0000-0001-6971-4499</orcidid></search><sort><creationdate>20230801</creationdate><title>Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection</title><author>Zhang, R ; Boué, P ; Campillo, M ; Ma, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-1f81c7e53ff0c4d222e16c839a9d5eca3a722cf59bceee287ad12f2ec539da213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, R</creatorcontrib><creatorcontrib>Boué, P</creatorcontrib><creatorcontrib>Campillo, M</creatorcontrib><creatorcontrib>Ma, J</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, R</au><au>Boué, P</au><au>Campillo, M</au><au>Ma, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection</atitle><jtitle>Geophysical journal international</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>234</volume><issue>2</issue><spage>933</spage><epage>947</epage><pages>933-947</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY Secondary microseisms are caused by nonlinear interactions between ocean waves of approximately equal wavelengths and opposite propagation directions. This seismic forcing is evaluated using ocean sea-state hindcast data and further modulated by the bathymetric effect. The numerical ocean model provides a global activity representation of the secondary microseisms, from which we isolate major events. We backprojected teleseismic P-wave propagation into the Earth's mantle to validate these events as effective seismic sources. The ocean model provides spectral amplitude information for modelling microseisms generated seismic wavefield. A comparison of the backprojection for P and PP phases from observed and synthetic microseisms forcing indicates high reliability in the ocean model, at least for major sources. A combination of P and PP phases detected across a global network of stations enables global ocean coverage. We improve backprojection images even further by introducing a two-step stacking for the P phase to address the problem of unbalanced station distribution. Thresholds of microseisms events forces valuable for seismic imaging are determined by comparing backprojections and ocean models for the years 2015 and 2020. Finally, we extracted a catalogue of microseisms events every 3-hr from 1994 to 2020 from the ocean hindcast data set. This catalogue is an intriguing resource for future applications of interferometric imaging at large scale.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggad103</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9803-0763</orcidid><orcidid>https://orcid.org/0000-0001-6971-4499</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2023-08, Vol.234 (2), p.933-947
issn 0956-540X
1365-246X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04066397v1
source Oxford Journals Open Access Collection
subjects Earth Sciences
Geophysics
Sciences of the Universe
title Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20P-wave%20secondary%20microseisms%20events:%20a%20comparison%20of%20observed%20and%20modelled%20backprojection&rft.jtitle=Geophysical%20journal%20international&rft.au=Zhang,%20R&rft.date=2023-08-01&rft.volume=234&rft.issue=2&rft.spage=933&rft.epage=947&rft.pages=933-947&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggad103&rft_dat=%3Coup_TOX%3E10.1093/gji/ggad103%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggad103&rfr_iscdi=true