Solute transport in the brain tissue: what are the key biophysical parameters tying in vivo and in vitro studies together?

The mechanisms of solute transport in brain tissues are still under debate. The medical relevance of this topic has put the blood-brain barrier and the mechanisms of solute transport through the brain parenchyma in the spotlight, notably in the context of brain clearance. In the last decade, the cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2023-05, Vol.11 (10), p.3450-3460
Hauptverfasser: Alcaide, Daniel, Cacheux, Jean, Bancaud, Aurélien, Muramatsu, Rieko, Matsunaga, Yukiko T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3460
container_issue 10
container_start_page 3450
container_title Biomaterials science
container_volume 11
creator Alcaide, Daniel
Cacheux, Jean
Bancaud, Aurélien
Muramatsu, Rieko
Matsunaga, Yukiko T
description The mechanisms of solute transport in brain tissues are still under debate. The medical relevance of this topic has put the blood-brain barrier and the mechanisms of solute transport through the brain parenchyma in the spotlight, notably in the context of brain clearance. In the last decade, the classical view of pure diffusive flow across the brain parenchyma was tested against the recent proposal of an active, convectional fluid flow model known as the glymphatic model. Experimental studies of brain transport on living humans and animals have temporal and spatial limitations to validate any of these models. Therefore, detailed microscopic observations, mostly tissue and simplified brain models with the support from computational models, are necessary to understand transport mechanisms in brain tissues. However, standardization is lacking between these experimental approaches, which tends to limit the generality of conclusions. In this review, we provide an overview of the output and limitations of modern brain solute transport studies to search for key parameters comparable across experimental setups. We emphasize that models relying on physiological material and reproducing the biophysical setting of the brain, as well as computational/mathematical models constitute powerful solutions to understand the solute transport phenomena inside of the brain tissue. Finally, we suggest the blood-brain barrier permeability and the apparent diffusion coefficient through the brain parenchyma to be robust biophysical parameters for the extraction of cross-model conclusion.
doi_str_mv 10.1039/d3bm00027c
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04063141v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813851297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f322fb533aeb7111b6c98ae4a59bac1d4da0cc1bc698edc274b07a396547fbb83</originalsourceid><addsrcrecordid>eNpd0c1u1DAUBWALUdGqdMMDIEtsoNKA_xLHbFCZ0hZpEAtgHV07Nx2XJE5tZ9D06cl0yixY-cj-dOSrS8grzt5zJs2HRtqeMSa0e0ZOBFN6oSplnh-yZMfkLKW72TCtDSv5C3IsNeOKieKEPPwI3ZSR5ghDGkPM1A80r5HaCLvkU5rwI_2zhkwh4uPTb9xS68O43ibvoKMjROgxY0w0b_1wu6vY-E2gMDT7nGOgKU-Nx5mEW5xb4qeX5KiFLuHZ03lKfl19-bm8Way-X39dXqwWTnGWF60UorWFlIBWc85t6UwFqKAwFhxvVAPMOW5daSpsnNDKMg3SlIXSrbWVPCXv9r1r6Oox-h7itg7g65uLVb27Y4qVkiu-4bN9u7djDPcTplz3PjnsOhgwTKkW2hSyqEqmZvrmP3oXpjjMk9Si4rIquDB6Vud75WJIKWJ7-AFn9W6B9aX8_O1xgcsZv36qnGyPzYH-W5f8CwjClfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813851297</pqid></control><display><type>article</type><title>Solute transport in the brain tissue: what are the key biophysical parameters tying in vivo and in vitro studies together?</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Alcaide, Daniel ; Cacheux, Jean ; Bancaud, Aurélien ; Muramatsu, Rieko ; Matsunaga, Yukiko T</creator><creatorcontrib>Alcaide, Daniel ; Cacheux, Jean ; Bancaud, Aurélien ; Muramatsu, Rieko ; Matsunaga, Yukiko T</creatorcontrib><description>The mechanisms of solute transport in brain tissues are still under debate. The medical relevance of this topic has put the blood-brain barrier and the mechanisms of solute transport through the brain parenchyma in the spotlight, notably in the context of brain clearance. In the last decade, the classical view of pure diffusive flow across the brain parenchyma was tested against the recent proposal of an active, convectional fluid flow model known as the glymphatic model. Experimental studies of brain transport on living humans and animals have temporal and spatial limitations to validate any of these models. Therefore, detailed microscopic observations, mostly tissue and simplified brain models with the support from computational models, are necessary to understand transport mechanisms in brain tissues. However, standardization is lacking between these experimental approaches, which tends to limit the generality of conclusions. In this review, we provide an overview of the output and limitations of modern brain solute transport studies to search for key parameters comparable across experimental setups. We emphasize that models relying on physiological material and reproducing the biophysical setting of the brain, as well as computational/mathematical models constitute powerful solutions to understand the solute transport phenomena inside of the brain tissue. Finally, we suggest the blood-brain barrier permeability and the apparent diffusion coefficient through the brain parenchyma to be robust biophysical parameters for the extraction of cross-model conclusion.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d3bm00027c</identifier><identifier>PMID: 37014025</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Bioengineering ; Biological Transport ; Biomaterials ; Blood-brain barrier ; Brain ; Diffusion ; Diffusion barriers ; Diffusion coefficient ; Fluid flow ; Humans ; In vivo methods and tests ; Life Sciences ; Models, Biological ; Models, Theoretical ; Parameter robustness ; Robustness (mathematics) ; Transport phenomena</subject><ispartof>Biomaterials science, 2023-05, Vol.11 (10), p.3450-3460</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c410t-f322fb533aeb7111b6c98ae4a59bac1d4da0cc1bc698edc274b07a396547fbb83</cites><orcidid>0000-0002-0483-9423 ; 0000-0002-0308-249X ; 0000-0001-6671-5533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://laas.hal.science/hal-04063141$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alcaide, Daniel</creatorcontrib><creatorcontrib>Cacheux, Jean</creatorcontrib><creatorcontrib>Bancaud, Aurélien</creatorcontrib><creatorcontrib>Muramatsu, Rieko</creatorcontrib><creatorcontrib>Matsunaga, Yukiko T</creatorcontrib><title>Solute transport in the brain tissue: what are the key biophysical parameters tying in vivo and in vitro studies together?</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>The mechanisms of solute transport in brain tissues are still under debate. The medical relevance of this topic has put the blood-brain barrier and the mechanisms of solute transport through the brain parenchyma in the spotlight, notably in the context of brain clearance. In the last decade, the classical view of pure diffusive flow across the brain parenchyma was tested against the recent proposal of an active, convectional fluid flow model known as the glymphatic model. Experimental studies of brain transport on living humans and animals have temporal and spatial limitations to validate any of these models. Therefore, detailed microscopic observations, mostly tissue and simplified brain models with the support from computational models, are necessary to understand transport mechanisms in brain tissues. However, standardization is lacking between these experimental approaches, which tends to limit the generality of conclusions. In this review, we provide an overview of the output and limitations of modern brain solute transport studies to search for key parameters comparable across experimental setups. We emphasize that models relying on physiological material and reproducing the biophysical setting of the brain, as well as computational/mathematical models constitute powerful solutions to understand the solute transport phenomena inside of the brain tissue. Finally, we suggest the blood-brain barrier permeability and the apparent diffusion coefficient through the brain parenchyma to be robust biophysical parameters for the extraction of cross-model conclusion.</description><subject>Animals</subject><subject>Bioengineering</subject><subject>Biological Transport</subject><subject>Biomaterials</subject><subject>Blood-brain barrier</subject><subject>Brain</subject><subject>Diffusion</subject><subject>Diffusion barriers</subject><subject>Diffusion coefficient</subject><subject>Fluid flow</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Parameter robustness</subject><subject>Robustness (mathematics)</subject><subject>Transport phenomena</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c1u1DAUBWALUdGqdMMDIEtsoNKA_xLHbFCZ0hZpEAtgHV07Nx2XJE5tZ9D06cl0yixY-cj-dOSrS8grzt5zJs2HRtqeMSa0e0ZOBFN6oSplnh-yZMfkLKW72TCtDSv5C3IsNeOKieKEPPwI3ZSR5ghDGkPM1A80r5HaCLvkU5rwI_2zhkwh4uPTb9xS68O43ibvoKMjROgxY0w0b_1wu6vY-E2gMDT7nGOgKU-Nx5mEW5xb4qeX5KiFLuHZ03lKfl19-bm8Way-X39dXqwWTnGWF60UorWFlIBWc85t6UwFqKAwFhxvVAPMOW5daSpsnNDKMg3SlIXSrbWVPCXv9r1r6Oox-h7itg7g65uLVb27Y4qVkiu-4bN9u7djDPcTplz3PjnsOhgwTKkW2hSyqEqmZvrmP3oXpjjMk9Si4rIquDB6Vud75WJIKWJ7-AFn9W6B9aX8_O1xgcsZv36qnGyPzYH-W5f8CwjClfg</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Alcaide, Daniel</creator><creator>Cacheux, Jean</creator><creator>Bancaud, Aurélien</creator><creator>Muramatsu, Rieko</creator><creator>Matsunaga, Yukiko T</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0483-9423</orcidid><orcidid>https://orcid.org/0000-0002-0308-249X</orcidid><orcidid>https://orcid.org/0000-0001-6671-5533</orcidid></search><sort><creationdate>20230516</creationdate><title>Solute transport in the brain tissue: what are the key biophysical parameters tying in vivo and in vitro studies together?</title><author>Alcaide, Daniel ; Cacheux, Jean ; Bancaud, Aurélien ; Muramatsu, Rieko ; Matsunaga, Yukiko T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f322fb533aeb7111b6c98ae4a59bac1d4da0cc1bc698edc274b07a396547fbb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Bioengineering</topic><topic>Biological Transport</topic><topic>Biomaterials</topic><topic>Blood-brain barrier</topic><topic>Brain</topic><topic>Diffusion</topic><topic>Diffusion barriers</topic><topic>Diffusion coefficient</topic><topic>Fluid flow</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Parameter robustness</topic><topic>Robustness (mathematics)</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcaide, Daniel</creatorcontrib><creatorcontrib>Cacheux, Jean</creatorcontrib><creatorcontrib>Bancaud, Aurélien</creatorcontrib><creatorcontrib>Muramatsu, Rieko</creatorcontrib><creatorcontrib>Matsunaga, Yukiko T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcaide, Daniel</au><au>Cacheux, Jean</au><au>Bancaud, Aurélien</au><au>Muramatsu, Rieko</au><au>Matsunaga, Yukiko T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solute transport in the brain tissue: what are the key biophysical parameters tying in vivo and in vitro studies together?</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2023-05-16</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><spage>3450</spage><epage>3460</epage><pages>3450-3460</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>The mechanisms of solute transport in brain tissues are still under debate. The medical relevance of this topic has put the blood-brain barrier and the mechanisms of solute transport through the brain parenchyma in the spotlight, notably in the context of brain clearance. In the last decade, the classical view of pure diffusive flow across the brain parenchyma was tested against the recent proposal of an active, convectional fluid flow model known as the glymphatic model. Experimental studies of brain transport on living humans and animals have temporal and spatial limitations to validate any of these models. Therefore, detailed microscopic observations, mostly tissue and simplified brain models with the support from computational models, are necessary to understand transport mechanisms in brain tissues. However, standardization is lacking between these experimental approaches, which tends to limit the generality of conclusions. In this review, we provide an overview of the output and limitations of modern brain solute transport studies to search for key parameters comparable across experimental setups. We emphasize that models relying on physiological material and reproducing the biophysical setting of the brain, as well as computational/mathematical models constitute powerful solutions to understand the solute transport phenomena inside of the brain tissue. Finally, we suggest the blood-brain barrier permeability and the apparent diffusion coefficient through the brain parenchyma to be robust biophysical parameters for the extraction of cross-model conclusion.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37014025</pmid><doi>10.1039/d3bm00027c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0483-9423</orcidid><orcidid>https://orcid.org/0000-0002-0308-249X</orcidid><orcidid>https://orcid.org/0000-0001-6671-5533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2023-05, Vol.11 (10), p.3450-3460
issn 2047-4830
2047-4849
language eng
recordid cdi_hal_primary_oai_HAL_hal_04063141v1
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Bioengineering
Biological Transport
Biomaterials
Blood-brain barrier
Brain
Diffusion
Diffusion barriers
Diffusion coefficient
Fluid flow
Humans
In vivo methods and tests
Life Sciences
Models, Biological
Models, Theoretical
Parameter robustness
Robustness (mathematics)
Transport phenomena
title Solute transport in the brain tissue: what are the key biophysical parameters tying in vivo and in vitro studies together?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solute%20transport%20in%20the%20brain%20tissue:%20what%20are%20the%20key%20biophysical%20parameters%20tying%20in%20vivo%20and%20in%20vitro%20studies%20together?&rft.jtitle=Biomaterials%20science&rft.au=Alcaide,%20Daniel&rft.date=2023-05-16&rft.volume=11&rft.issue=10&rft.spage=3450&rft.epage=3460&rft.pages=3450-3460&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d3bm00027c&rft_dat=%3Cproquest_hal_p%3E2813851297%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813851297&rft_id=info:pmid/37014025&rfr_iscdi=true