Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots
Charge noise is one of the main sources of environmental decoherence for spin qubits in silicon, presenting a major obstacle in the path towards highly scalable and reproducible qubit fabrication. Here we demonstrate in-depth characterization of the charge noise environment experienced by a quantum...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2023-04, Vol.19 (4), Article 044010 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review applied |
container_volume | 19 |
creator | Spence, Cameron Cardoso Paz, Bruna Michal, Vincent Chanrion, Emmanuel Niegemann, David J. Jadot, Baptiste Mortemousque, Pierre-André Klemt, Bernhard Thiney, Vivien Bertrand, Benoit Hutin, Louis Bäuerle, Christopher Vinet, Maud Niquet, Yann-Michel Meunier, Tristan Urdampilleta, Matias |
description | Charge noise is one of the main sources of environmental decoherence for spin qubits in silicon, presenting a major obstacle in the path towards highly scalable and reproducible qubit fabrication. Here we demonstrate in-depth characterization of the charge noise environment experienced by a quantum dot in a CMOS-fabricated silicon nanowire. We probe the charge noise for different quantum dot configurations, finding that it is possible to tune the charge noise over two orders of magnitude, ranging from 1μeV2/Hz to 100μeV2/Hz. In particular, we show that the top interface and the reservoirs are the main sources of charge noise, and their effect can be mitigated by controlling the quantum dot extension. Additionally, we demonstrate a method for the measurement of the charge noise experienced by a quantum dot in the few-electron regime. We measure a comparatively high charge noise value of 40μeV2/Hz at the first electron, and demonstrate that the charge noise is highly dependent on the electron occupancy of the quantum dot. |
doi_str_mv | 10.1103/PhysRevApplied.19.044010 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04062049v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04062049v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3786d2ea7cb508c54c5bc9cfa0bbbf95456252ca58fa358884a1f24c616a21543</originalsourceid><addsrcrecordid>eNpVkEtvwjAQhK2qlYoo_8HXHkJ3_QjJEQUoSGmhr7PlGAdShZjaAcS_L4iqak8zGs3sSh8hFKGPCPxhsT6GV7sfbrd1ZZd9TPsgBCBckQ7jHKMBYHr9x9-SXgifAIDIJCTQIaOFd0XVrGjuDtHE26-dbcyRZmvtV5Y-uypYWjV0Yg_RuLam9a6h2dP8jb7sdNPuNnTk2nBHbkpdB9v70S75mIzfs2mUzx9n2TCPDBe8jfggiZfM6oEpTs-NFEYWJjWlhqIoylQKGTPJjJZJqblMkkRoLJkwMcaaoRS8S-4vd9e6VltfbbQ_KqcrNR3m6pyBgJiBSPd46iaXrvEuBG_L3wGCOsNT_-EpTNUFHv8Goy5k6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots</title><source>American Physical Society Journals</source><creator>Spence, Cameron ; Cardoso Paz, Bruna ; Michal, Vincent ; Chanrion, Emmanuel ; Niegemann, David J. ; Jadot, Baptiste ; Mortemousque, Pierre-André ; Klemt, Bernhard ; Thiney, Vivien ; Bertrand, Benoit ; Hutin, Louis ; Bäuerle, Christopher ; Vinet, Maud ; Niquet, Yann-Michel ; Meunier, Tristan ; Urdampilleta, Matias</creator><creatorcontrib>Spence, Cameron ; Cardoso Paz, Bruna ; Michal, Vincent ; Chanrion, Emmanuel ; Niegemann, David J. ; Jadot, Baptiste ; Mortemousque, Pierre-André ; Klemt, Bernhard ; Thiney, Vivien ; Bertrand, Benoit ; Hutin, Louis ; Bäuerle, Christopher ; Vinet, Maud ; Niquet, Yann-Michel ; Meunier, Tristan ; Urdampilleta, Matias</creatorcontrib><description>Charge noise is one of the main sources of environmental decoherence for spin qubits in silicon, presenting a major obstacle in the path towards highly scalable and reproducible qubit fabrication. Here we demonstrate in-depth characterization of the charge noise environment experienced by a quantum dot in a CMOS-fabricated silicon nanowire. We probe the charge noise for different quantum dot configurations, finding that it is possible to tune the charge noise over two orders of magnitude, ranging from 1μeV2/Hz to 100μeV2/Hz. In particular, we show that the top interface and the reservoirs are the main sources of charge noise, and their effect can be mitigated by controlling the quantum dot extension. Additionally, we demonstrate a method for the measurement of the charge noise experienced by a quantum dot in the few-electron regime. We measure a comparatively high charge noise value of 40μeV2/Hz at the first electron, and demonstrate that the charge noise is highly dependent on the electron occupancy of the quantum dot.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.19.044010</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Physics ; Quantum Physics</subject><ispartof>Physical review applied, 2023-04, Vol.19 (4), Article 044010</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3786d2ea7cb508c54c5bc9cfa0bbbf95456252ca58fa358884a1f24c616a21543</citedby><cites>FETCH-LOGICAL-c343t-3786d2ea7cb508c54c5bc9cfa0bbbf95456252ca58fa358884a1f24c616a21543</cites><orcidid>0000-0001-6870-4459 ; 0000-0002-1069-542X ; 0000-0001-7393-0346 ; 0000-0001-5242-2086 ; 0000-0002-8336-3178 ; 0000-0002-7935-2783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27928,27929</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04062049$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Spence, Cameron</creatorcontrib><creatorcontrib>Cardoso Paz, Bruna</creatorcontrib><creatorcontrib>Michal, Vincent</creatorcontrib><creatorcontrib>Chanrion, Emmanuel</creatorcontrib><creatorcontrib>Niegemann, David J.</creatorcontrib><creatorcontrib>Jadot, Baptiste</creatorcontrib><creatorcontrib>Mortemousque, Pierre-André</creatorcontrib><creatorcontrib>Klemt, Bernhard</creatorcontrib><creatorcontrib>Thiney, Vivien</creatorcontrib><creatorcontrib>Bertrand, Benoit</creatorcontrib><creatorcontrib>Hutin, Louis</creatorcontrib><creatorcontrib>Bäuerle, Christopher</creatorcontrib><creatorcontrib>Vinet, Maud</creatorcontrib><creatorcontrib>Niquet, Yann-Michel</creatorcontrib><creatorcontrib>Meunier, Tristan</creatorcontrib><creatorcontrib>Urdampilleta, Matias</creatorcontrib><title>Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots</title><title>Physical review applied</title><description>Charge noise is one of the main sources of environmental decoherence for spin qubits in silicon, presenting a major obstacle in the path towards highly scalable and reproducible qubit fabrication. Here we demonstrate in-depth characterization of the charge noise environment experienced by a quantum dot in a CMOS-fabricated silicon nanowire. We probe the charge noise for different quantum dot configurations, finding that it is possible to tune the charge noise over two orders of magnitude, ranging from 1μeV2/Hz to 100μeV2/Hz. In particular, we show that the top interface and the reservoirs are the main sources of charge noise, and their effect can be mitigated by controlling the quantum dot extension. Additionally, we demonstrate a method for the measurement of the charge noise experienced by a quantum dot in the few-electron regime. We measure a comparatively high charge noise value of 40μeV2/Hz at the first electron, and demonstrate that the charge noise is highly dependent on the electron occupancy of the quantum dot.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkEtvwjAQhK2qlYoo_8HXHkJ3_QjJEQUoSGmhr7PlGAdShZjaAcS_L4iqak8zGs3sSh8hFKGPCPxhsT6GV7sfbrd1ZZd9TPsgBCBckQ7jHKMBYHr9x9-SXgifAIDIJCTQIaOFd0XVrGjuDtHE26-dbcyRZmvtV5Y-uypYWjV0Yg_RuLam9a6h2dP8jb7sdNPuNnTk2nBHbkpdB9v70S75mIzfs2mUzx9n2TCPDBe8jfggiZfM6oEpTs-NFEYWJjWlhqIoylQKGTPJjJZJqblMkkRoLJkwMcaaoRS8S-4vd9e6VltfbbQ_KqcrNR3m6pyBgJiBSPd46iaXrvEuBG_L3wGCOsNT_-EpTNUFHv8Goy5k6g</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Spence, Cameron</creator><creator>Cardoso Paz, Bruna</creator><creator>Michal, Vincent</creator><creator>Chanrion, Emmanuel</creator><creator>Niegemann, David J.</creator><creator>Jadot, Baptiste</creator><creator>Mortemousque, Pierre-André</creator><creator>Klemt, Bernhard</creator><creator>Thiney, Vivien</creator><creator>Bertrand, Benoit</creator><creator>Hutin, Louis</creator><creator>Bäuerle, Christopher</creator><creator>Vinet, Maud</creator><creator>Niquet, Yann-Michel</creator><creator>Meunier, Tristan</creator><creator>Urdampilleta, Matias</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6870-4459</orcidid><orcidid>https://orcid.org/0000-0002-1069-542X</orcidid><orcidid>https://orcid.org/0000-0001-7393-0346</orcidid><orcidid>https://orcid.org/0000-0001-5242-2086</orcidid><orcidid>https://orcid.org/0000-0002-8336-3178</orcidid><orcidid>https://orcid.org/0000-0002-7935-2783</orcidid></search><sort><creationdate>20230401</creationdate><title>Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots</title><author>Spence, Cameron ; Cardoso Paz, Bruna ; Michal, Vincent ; Chanrion, Emmanuel ; Niegemann, David J. ; Jadot, Baptiste ; Mortemousque, Pierre-André ; Klemt, Bernhard ; Thiney, Vivien ; Bertrand, Benoit ; Hutin, Louis ; Bäuerle, Christopher ; Vinet, Maud ; Niquet, Yann-Michel ; Meunier, Tristan ; Urdampilleta, Matias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3786d2ea7cb508c54c5bc9cfa0bbbf95456252ca58fa358884a1f24c616a21543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spence, Cameron</creatorcontrib><creatorcontrib>Cardoso Paz, Bruna</creatorcontrib><creatorcontrib>Michal, Vincent</creatorcontrib><creatorcontrib>Chanrion, Emmanuel</creatorcontrib><creatorcontrib>Niegemann, David J.</creatorcontrib><creatorcontrib>Jadot, Baptiste</creatorcontrib><creatorcontrib>Mortemousque, Pierre-André</creatorcontrib><creatorcontrib>Klemt, Bernhard</creatorcontrib><creatorcontrib>Thiney, Vivien</creatorcontrib><creatorcontrib>Bertrand, Benoit</creatorcontrib><creatorcontrib>Hutin, Louis</creatorcontrib><creatorcontrib>Bäuerle, Christopher</creatorcontrib><creatorcontrib>Vinet, Maud</creatorcontrib><creatorcontrib>Niquet, Yann-Michel</creatorcontrib><creatorcontrib>Meunier, Tristan</creatorcontrib><creatorcontrib>Urdampilleta, Matias</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spence, Cameron</au><au>Cardoso Paz, Bruna</au><au>Michal, Vincent</au><au>Chanrion, Emmanuel</au><au>Niegemann, David J.</au><au>Jadot, Baptiste</au><au>Mortemousque, Pierre-André</au><au>Klemt, Bernhard</au><au>Thiney, Vivien</au><au>Bertrand, Benoit</au><au>Hutin, Louis</au><au>Bäuerle, Christopher</au><au>Vinet, Maud</au><au>Niquet, Yann-Michel</au><au>Meunier, Tristan</au><au>Urdampilleta, Matias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots</atitle><jtitle>Physical review applied</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><artnum>044010</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Charge noise is one of the main sources of environmental decoherence for spin qubits in silicon, presenting a major obstacle in the path towards highly scalable and reproducible qubit fabrication. Here we demonstrate in-depth characterization of the charge noise environment experienced by a quantum dot in a CMOS-fabricated silicon nanowire. We probe the charge noise for different quantum dot configurations, finding that it is possible to tune the charge noise over two orders of magnitude, ranging from 1μeV2/Hz to 100μeV2/Hz. In particular, we show that the top interface and the reservoirs are the main sources of charge noise, and their effect can be mitigated by controlling the quantum dot extension. Additionally, we demonstrate a method for the measurement of the charge noise experienced by a quantum dot in the few-electron regime. We measure a comparatively high charge noise value of 40μeV2/Hz at the first electron, and demonstrate that the charge noise is highly dependent on the electron occupancy of the quantum dot.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.19.044010</doi><orcidid>https://orcid.org/0000-0001-6870-4459</orcidid><orcidid>https://orcid.org/0000-0002-1069-542X</orcidid><orcidid>https://orcid.org/0000-0001-7393-0346</orcidid><orcidid>https://orcid.org/0000-0001-5242-2086</orcidid><orcidid>https://orcid.org/0000-0002-8336-3178</orcidid><orcidid>https://orcid.org/0000-0002-7935-2783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2023-04, Vol.19 (4), Article 044010 |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04062049v1 |
source | American Physical Society Journals |
subjects | Condensed Matter Physics Quantum Physics |
title | Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Low-Frequency%20Charge%20Noise%20in%20Few-Electron%20CMOS%20Quantum%20Dots&rft.jtitle=Physical%20review%20applied&rft.au=Spence,%20Cameron&rft.date=2023-04-01&rft.volume=19&rft.issue=4&rft.artnum=044010&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.19.044010&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04062049v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |