A bulk-synchronous parallel process algebra

The calculus of communicating systems (CCS) process algebra is a well-known formal model of synchronization and communication. It is used for the analysis of safety and liveness in protocols or distributed programs. In more recent work, it is used for the analysis of security properties. Bulk-synchr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer languages, systems & structures systems & structures, 2007-10, Vol.33 (3), p.111-133
Hauptverfasser: Merlin, Armelle, Hains, Gaétan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 3
container_start_page 111
container_title Computer languages, systems & structures
container_volume 33
creator Merlin, Armelle
Hains, Gaétan
description The calculus of communicating systems (CCS) process algebra is a well-known formal model of synchronization and communication. It is used for the analysis of safety and liveness in protocols or distributed programs. In more recent work, it is used for the analysis of security properties. Bulk-synchronous parallelism (BSP) is an algorithm and programming model of data-parallel computation. It is useful for the design, analysis and programming of scalable parallel algorithms. Many current evolutions require the integration of distributed and parallel programming: grid systems for sharing resources across the Internet, secure and reliable global access to parallel computer systems, geographic distribution of confidential data on randomly accessible systems, etc. Such software services must provide guarantees of safety, liveness, security together with scalable and reliable performance. Formal models are therefore needed to combine parallel performance and concurrent behavior. With this goal in mind, we propose here an integration of BSP with CCS semantics, generalize its cost (performance) model and sketch its application to scheduling problems in meta-computing.
doi_str_mv 10.1016/j.cl.2006.11.001
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04047868v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1477842406000327</els_id><sourcerecordid>oai_HAL_hal_04047868v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-5d3a51bb0de37be7d443716d6f69a589cfda92aee9ea73a3e6eaf8f25fcbbc043</originalsourceid><addsrcrecordid>eNp1kEFLAzEQRoMoWKt3j3sV2XWyySZZb0tRKxS86DnMZid2a-yWpC3037ul4s3TfAzfG5jH2C2HggNXD6vChaIEUAXnBQA_YxNutMiVUep8zFLr3MhSXrKrlFYAJRhZTdh9k7W78JWnw9ot47AedinbYMQQKGSbODhKKcPwSW3Ea3bhMSS6-Z1T9vH89D6b54u3l9dZs8idKM02rzqBFW9b6EjolnQnpdBcdcqrGitTO99hXSJRTagFClKE3viy8q5tHUgxZXenu0sMdhP7b4wHO2Bv583CHncgQWqjzJ6PXTh1XRxSiuT_AA72KMaurAv2KMZybkcxI_J4Qmj8Yd9TtMn1tHbU9ZHc1nZD_z_8A3Vnalo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bulk-synchronous parallel process algebra</title><source>Elsevier ScienceDirect Journals</source><creator>Merlin, Armelle ; Hains, Gaétan</creator><creatorcontrib>Merlin, Armelle ; Hains, Gaétan</creatorcontrib><description>The calculus of communicating systems (CCS) process algebra is a well-known formal model of synchronization and communication. It is used for the analysis of safety and liveness in protocols or distributed programs. In more recent work, it is used for the analysis of security properties. Bulk-synchronous parallelism (BSP) is an algorithm and programming model of data-parallel computation. It is useful for the design, analysis and programming of scalable parallel algorithms. Many current evolutions require the integration of distributed and parallel programming: grid systems for sharing resources across the Internet, secure and reliable global access to parallel computer systems, geographic distribution of confidential data on randomly accessible systems, etc. Such software services must provide guarantees of safety, liveness, security together with scalable and reliable performance. Formal models are therefore needed to combine parallel performance and concurrent behavior. With this goal in mind, we propose here an integration of BSP with CCS semantics, generalize its cost (performance) model and sketch its application to scheduling problems in meta-computing.</description><identifier>ISSN: 1477-8424</identifier><identifier>EISSN: 1873-6866</identifier><identifier>DOI: 10.1016/j.cl.2006.11.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>BSP model ; Computer Science ; Parallel programming ; Path algebras ; Performance model ; Process algebras</subject><ispartof>Computer languages, systems &amp; structures, 2007-10, Vol.33 (3), p.111-133</ispartof><rights>2006 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-5d3a51bb0de37be7d443716d6f69a589cfda92aee9ea73a3e6eaf8f25fcbbc043</citedby><cites>FETCH-LOGICAL-c328t-5d3a51bb0de37be7d443716d6f69a589cfda92aee9ea73a3e6eaf8f25fcbbc043</cites><orcidid>0000-0002-1687-8091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1477842406000327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04047868$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Merlin, Armelle</creatorcontrib><creatorcontrib>Hains, Gaétan</creatorcontrib><title>A bulk-synchronous parallel process algebra</title><title>Computer languages, systems &amp; structures</title><description>The calculus of communicating systems (CCS) process algebra is a well-known formal model of synchronization and communication. It is used for the analysis of safety and liveness in protocols or distributed programs. In more recent work, it is used for the analysis of security properties. Bulk-synchronous parallelism (BSP) is an algorithm and programming model of data-parallel computation. It is useful for the design, analysis and programming of scalable parallel algorithms. Many current evolutions require the integration of distributed and parallel programming: grid systems for sharing resources across the Internet, secure and reliable global access to parallel computer systems, geographic distribution of confidential data on randomly accessible systems, etc. Such software services must provide guarantees of safety, liveness, security together with scalable and reliable performance. Formal models are therefore needed to combine parallel performance and concurrent behavior. With this goal in mind, we propose here an integration of BSP with CCS semantics, generalize its cost (performance) model and sketch its application to scheduling problems in meta-computing.</description><subject>BSP model</subject><subject>Computer Science</subject><subject>Parallel programming</subject><subject>Path algebras</subject><subject>Performance model</subject><subject>Process algebras</subject><issn>1477-8424</issn><issn>1873-6866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQRoMoWKt3j3sV2XWyySZZb0tRKxS86DnMZid2a-yWpC3037ul4s3TfAzfG5jH2C2HggNXD6vChaIEUAXnBQA_YxNutMiVUep8zFLr3MhSXrKrlFYAJRhZTdh9k7W78JWnw9ot47AedinbYMQQKGSbODhKKcPwSW3Ea3bhMSS6-Z1T9vH89D6b54u3l9dZs8idKM02rzqBFW9b6EjolnQnpdBcdcqrGitTO99hXSJRTagFClKE3viy8q5tHUgxZXenu0sMdhP7b4wHO2Bv583CHncgQWqjzJ6PXTh1XRxSiuT_AA72KMaurAv2KMZybkcxI_J4Qmj8Yd9TtMn1tHbU9ZHc1nZD_z_8A3Vnalo</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Merlin, Armelle</creator><creator>Hains, Gaétan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1687-8091</orcidid></search><sort><creationdate>20071001</creationdate><title>A bulk-synchronous parallel process algebra</title><author>Merlin, Armelle ; Hains, Gaétan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-5d3a51bb0de37be7d443716d6f69a589cfda92aee9ea73a3e6eaf8f25fcbbc043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>BSP model</topic><topic>Computer Science</topic><topic>Parallel programming</topic><topic>Path algebras</topic><topic>Performance model</topic><topic>Process algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, Armelle</creatorcontrib><creatorcontrib>Hains, Gaétan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer languages, systems &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, Armelle</au><au>Hains, Gaétan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bulk-synchronous parallel process algebra</atitle><jtitle>Computer languages, systems &amp; structures</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>33</volume><issue>3</issue><spage>111</spage><epage>133</epage><pages>111-133</pages><issn>1477-8424</issn><eissn>1873-6866</eissn><abstract>The calculus of communicating systems (CCS) process algebra is a well-known formal model of synchronization and communication. It is used for the analysis of safety and liveness in protocols or distributed programs. In more recent work, it is used for the analysis of security properties. Bulk-synchronous parallelism (BSP) is an algorithm and programming model of data-parallel computation. It is useful for the design, analysis and programming of scalable parallel algorithms. Many current evolutions require the integration of distributed and parallel programming: grid systems for sharing resources across the Internet, secure and reliable global access to parallel computer systems, geographic distribution of confidential data on randomly accessible systems, etc. Such software services must provide guarantees of safety, liveness, security together with scalable and reliable performance. Formal models are therefore needed to combine parallel performance and concurrent behavior. With this goal in mind, we propose here an integration of BSP with CCS semantics, generalize its cost (performance) model and sketch its application to scheduling problems in meta-computing.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cl.2006.11.001</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1687-8091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-8424
ispartof Computer languages, systems & structures, 2007-10, Vol.33 (3), p.111-133
issn 1477-8424
1873-6866
language eng
recordid cdi_hal_primary_oai_HAL_hal_04047868v1
source Elsevier ScienceDirect Journals
subjects BSP model
Computer Science
Parallel programming
Path algebras
Performance model
Process algebras
title A bulk-synchronous parallel process algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bulk-synchronous%20parallel%20process%20algebra&rft.jtitle=Computer%20languages,%20systems%20&%20structures&rft.au=Merlin,%20Armelle&rft.date=2007-10-01&rft.volume=33&rft.issue=3&rft.spage=111&rft.epage=133&rft.pages=111-133&rft.issn=1477-8424&rft.eissn=1873-6866&rft_id=info:doi/10.1016/j.cl.2006.11.001&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04047868v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1477842406000327&rfr_iscdi=true