SGD with Coordinate Sampling: Theory and Practice

While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in data. In a non-convex setting and including zeroth order gradient estimate, almost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machine learning research 2022-10, Vol.23
Hauptverfasser: Leluc, Rémi, Portier, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of machine learning research
container_volume 23
creator Leluc, Rémi
Portier, François
description While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in data. In a non-convex setting and including zeroth order gradient estimate, almost sure convergence as well as non-asymptotic bounds are established. Within the proposed framework, we develop an algorithm, MUSKETEER, based on a reinforcement strategy: after collecting information on the noisy gradients, it samples the most promising coordinate (all for one); then it moves along the one direction yielding an important decrease of the objective (one for all). Numerical experiments on both synthetic and real data examples confirm the effectiveness of MUSKETEER in large scale problems.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04044494v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04044494v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h189t-5273fcfb3c381653e790a0fe33155aca605b156947336b73f413c8df55e866093</originalsourceid><addsrcrecordid>eNotjF1LwzAUhoMoODf_Q269CCQ9OUnj3ai6CQWFbdflNE1spGtHW5T9ez-v3oeHh_eCLRQCCOuy_PKXM6E14DW7maZ3KZXFzCyY2m0e-GeaW14Mw9iknubAd3Q8dal_u-f7NgzjmVPf8NeR_Jx8WLGrSN0Ubv93yQ5Pj_tiK8qXzXOxLkWrcjcLzCxEH2vwkCuDEKyTJGMAUIjkyUisFRqnLYCpv1utwOdNRAy5MdLBkt39_bbUVacxHWk8VwOlarsuqx8ntdRaO_2h4AvkrkDR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SGD with Coordinate Sampling: Theory and Practice</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ACM Digital Library</source><creator>Leluc, Rémi ; Portier, François</creator><creatorcontrib>Leluc, Rémi ; Portier, François</creatorcontrib><description>While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in data. In a non-convex setting and including zeroth order gradient estimate, almost sure convergence as well as non-asymptotic bounds are established. Within the proposed framework, we develop an algorithm, MUSKETEER, based on a reinforcement strategy: after collecting information on the noisy gradients, it samples the most promising coordinate (all for one); then it moves along the one direction yielding an important decrease of the objective (one for all). Numerical experiments on both synthetic and real data examples confirm the effectiveness of MUSKETEER in large scale problems.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><language>eng</language><publisher>Microtome Publishing</publisher><subject>Computer Science ; Machine Learning ; Other Statistics ; Statistics</subject><ispartof>Journal of machine learning research, 2022-10, Vol.23</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3139-3655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://telecom-paris.hal.science/hal-04044494$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leluc, Rémi</creatorcontrib><creatorcontrib>Portier, François</creatorcontrib><title>SGD with Coordinate Sampling: Theory and Practice</title><title>Journal of machine learning research</title><description>While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in data. In a non-convex setting and including zeroth order gradient estimate, almost sure convergence as well as non-asymptotic bounds are established. Within the proposed framework, we develop an algorithm, MUSKETEER, based on a reinforcement strategy: after collecting information on the noisy gradients, it samples the most promising coordinate (all for one); then it moves along the one direction yielding an important decrease of the objective (one for all). Numerical experiments on both synthetic and real data examples confirm the effectiveness of MUSKETEER in large scale problems.</description><subject>Computer Science</subject><subject>Machine Learning</subject><subject>Other Statistics</subject><subject>Statistics</subject><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjF1LwzAUhoMoODf_Q269CCQ9OUnj3ai6CQWFbdflNE1spGtHW5T9ez-v3oeHh_eCLRQCCOuy_PKXM6E14DW7maZ3KZXFzCyY2m0e-GeaW14Mw9iknubAd3Q8dal_u-f7NgzjmVPf8NeR_Jx8WLGrSN0Ubv93yQ5Pj_tiK8qXzXOxLkWrcjcLzCxEH2vwkCuDEKyTJGMAUIjkyUisFRqnLYCpv1utwOdNRAy5MdLBkt39_bbUVacxHWk8VwOlarsuqx8ntdRaO_2h4AvkrkDR</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Leluc, Rémi</creator><creator>Portier, François</creator><general>Microtome Publishing</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3139-3655</orcidid></search><sort><creationdate>20221001</creationdate><title>SGD with Coordinate Sampling: Theory and Practice</title><author>Leluc, Rémi ; Portier, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h189t-5273fcfb3c381653e790a0fe33155aca605b156947336b73f413c8df55e866093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Machine Learning</topic><topic>Other Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leluc, Rémi</creatorcontrib><creatorcontrib>Portier, François</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leluc, Rémi</au><au>Portier, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SGD with Coordinate Sampling: Theory and Practice</atitle><jtitle>Journal of machine learning research</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in data. In a non-convex setting and including zeroth order gradient estimate, almost sure convergence as well as non-asymptotic bounds are established. Within the proposed framework, we develop an algorithm, MUSKETEER, based on a reinforcement strategy: after collecting information on the noisy gradients, it samples the most promising coordinate (all for one); then it moves along the one direction yielding an important decrease of the objective (one for all). Numerical experiments on both synthetic and real data examples confirm the effectiveness of MUSKETEER in large scale problems.</abstract><pub>Microtome Publishing</pub><orcidid>https://orcid.org/0000-0003-3139-3655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-4435
ispartof Journal of machine learning research, 2022-10, Vol.23
issn 1532-4435
1533-7928
language eng
recordid cdi_hal_primary_oai_HAL_hal_04044494v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ACM Digital Library
subjects Computer Science
Machine Learning
Other Statistics
Statistics
title SGD with Coordinate Sampling: Theory and Practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SGD%20with%20Coordinate%20Sampling:%20Theory%20and%20Practice&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Leluc,%20R%C3%A9mi&rft.date=2022-10-01&rft.volume=23&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_04044494v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true