Control variate selection for Monte Carlo integration
Monte Carlo integration with variance reduction by means of control variates can be implemented by the ordinary least squares estimator for the intercept in a multiple linear regression model with the integrand as response and the control variates as covariates. Even without special knowledge on the...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2021-07, Vol.31 (4), Article 50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Statistics and computing |
container_volume | 31 |
creator | Leluc, Rémi Portier, François Segers, Johan |
description | Monte Carlo integration with variance reduction by means of control variates can be implemented by the ordinary least squares estimator for the intercept in a multiple linear regression model with the integrand as response and the control variates as covariates. Even without special knowledge on the integrand, significant efficiency gains can be obtained if the control variate space is sufficiently large. Incorporating a large number of control variates in the ordinary least squares procedure may however result in (i) a certain instability of the ordinary least squares estimator and (ii) a possibly prohibitive computation time. Regularizing the ordinary least squares estimator by preselecting appropriate control variates via the Lasso turns out to increase the accuracy without additional computational cost. The findings in the numerical experiment are confirmed by concentration inequalities for the integration error. |
doi_str_mv | 10.1007/s11222-021-10011-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04044428v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545240153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-531f6b34cd093b57a4b7db391efba9071f134f584492e1a3c7bbe63636ff00d73</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMTEYfD47bsYqAopUxAKz5aR2SRXiYqeV6K_HIQg25ME-v-89nR4hl8BugDF1GwE455RxoGkGoIcjMgGpkAIqeUwmrMgZRVDilJzFuBmYHMWEyNJ3ffBttjehMb3Nom1t3Te-y5wP2VNSbVaa0PqsSc91MIN2Tk6caaO9-Lmn5PX-7qVc0OXzw2M5X9IaC9VTieDyCkW9YgVWUhlRqVWFBVhXmYIpcIDCyZkQBbdgsFZVZXNMxznGVgqn5HrMfTOt3obm3YRP7U2jF_OlHv6YYEIIPttDYq9Gdhv8x87GXm_8LnRpPc2lkFwwkJgoPlJ18DEG635jgemhSj1WqVOV-rtKfUgmHE0xwd3ahr_of1xf88R1DQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545240153</pqid></control><display><type>article</type><title>Control variate selection for Monte Carlo integration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Leluc, Rémi ; Portier, François ; Segers, Johan</creator><creatorcontrib>Leluc, Rémi ; Portier, François ; Segers, Johan</creatorcontrib><description>Monte Carlo integration with variance reduction by means of control variates can be implemented by the ordinary least squares estimator for the intercept in a multiple linear regression model with the integrand as response and the control variates as covariates. Even without special knowledge on the integrand, significant efficiency gains can be obtained if the control variate space is sufficiently large. Incorporating a large number of control variates in the ordinary least squares procedure may however result in (i) a certain instability of the ordinary least squares estimator and (ii) a possibly prohibitive computation time. Regularizing the ordinary least squares estimator by preselecting appropriate control variates via the Lasso turns out to increase the accuracy without additional computational cost. The findings in the numerical experiment are confirmed by concentration inequalities for the integration error.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-021-10011-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Least squares ; Mathematics ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Regression models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2021-07, Vol.31 (4), Article 50</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-531f6b34cd093b57a4b7db391efba9071f134f584492e1a3c7bbe63636ff00d73</citedby><cites>FETCH-LOGICAL-c397t-531f6b34cd093b57a4b7db391efba9071f134f584492e1a3c7bbe63636ff00d73</cites><orcidid>0000-0002-0444-689X ; 0000-0003-3139-3655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-021-10011-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-021-10011-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://telecom-paris.hal.science/hal-04044428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leluc, Rémi</creatorcontrib><creatorcontrib>Portier, François</creatorcontrib><creatorcontrib>Segers, Johan</creatorcontrib><title>Control variate selection for Monte Carlo integration</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Monte Carlo integration with variance reduction by means of control variates can be implemented by the ordinary least squares estimator for the intercept in a multiple linear regression model with the integrand as response and the control variates as covariates. Even without special knowledge on the integrand, significant efficiency gains can be obtained if the control variate space is sufficiently large. Incorporating a large number of control variates in the ordinary least squares procedure may however result in (i) a certain instability of the ordinary least squares estimator and (ii) a possibly prohibitive computation time. Regularizing the ordinary least squares estimator by preselecting appropriate control variates via the Lasso turns out to increase the accuracy without additional computational cost. The findings in the numerical experiment are confirmed by concentration inequalities for the integration error.</description><subject>Artificial Intelligence</subject><subject>Least squares</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Regression models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMTEYfD47bsYqAopUxAKz5aR2SRXiYqeV6K_HIQg25ME-v-89nR4hl8BugDF1GwE455RxoGkGoIcjMgGpkAIqeUwmrMgZRVDilJzFuBmYHMWEyNJ3ffBttjehMb3Nom1t3Te-y5wP2VNSbVaa0PqsSc91MIN2Tk6caaO9-Lmn5PX-7qVc0OXzw2M5X9IaC9VTieDyCkW9YgVWUhlRqVWFBVhXmYIpcIDCyZkQBbdgsFZVZXNMxznGVgqn5HrMfTOt3obm3YRP7U2jF_OlHv6YYEIIPttDYq9Gdhv8x87GXm_8LnRpPc2lkFwwkJgoPlJ18DEG635jgemhSj1WqVOV-rtKfUgmHE0xwd3ahr_of1xf88R1DQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Leluc, Rémi</creator><creator>Portier, François</creator><creator>Segers, Johan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0444-689X</orcidid><orcidid>https://orcid.org/0000-0003-3139-3655</orcidid></search><sort><creationdate>20210701</creationdate><title>Control variate selection for Monte Carlo integration</title><author>Leluc, Rémi ; Portier, François ; Segers, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-531f6b34cd093b57a4b7db391efba9071f134f584492e1a3c7bbe63636ff00d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Least squares</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Regression models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leluc, Rémi</creatorcontrib><creatorcontrib>Portier, François</creatorcontrib><creatorcontrib>Segers, Johan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leluc, Rémi</au><au>Portier, François</au><au>Segers, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control variate selection for Monte Carlo integration</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><artnum>50</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Monte Carlo integration with variance reduction by means of control variates can be implemented by the ordinary least squares estimator for the intercept in a multiple linear regression model with the integrand as response and the control variates as covariates. Even without special knowledge on the integrand, significant efficiency gains can be obtained if the control variate space is sufficiently large. Incorporating a large number of control variates in the ordinary least squares procedure may however result in (i) a certain instability of the ordinary least squares estimator and (ii) a possibly prohibitive computation time. Regularizing the ordinary least squares estimator by preselecting appropriate control variates via the Lasso turns out to increase the accuracy without additional computational cost. The findings in the numerical experiment are confirmed by concentration inequalities for the integration error.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-021-10011-z</doi><orcidid>https://orcid.org/0000-0002-0444-689X</orcidid><orcidid>https://orcid.org/0000-0003-3139-3655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2021-07, Vol.31 (4), Article 50 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04044428v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Least squares Mathematics Mathematics and Statistics Probability and Statistics in Computer Science Regression models Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
title | Control variate selection for Monte Carlo integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20variate%20selection%20for%20Monte%20Carlo%20integration&rft.jtitle=Statistics%20and%20computing&rft.au=Leluc,%20R%C3%A9mi&rft.date=2021-07-01&rft.volume=31&rft.issue=4&rft.artnum=50&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-021-10011-z&rft_dat=%3Cproquest_hal_p%3E2545240153%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545240153&rft_id=info:pmid/&rfr_iscdi=true |