Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation

This paper presents a multimodal method for the computation of the acoustic field in an axisymmetric varying duct with or without liner and in the presence of mean flow. The original three-dimensional equations are rearranged into a set of coupled one-dimensional equations by projecting the acoustic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2023-06, Vol.61 (6), p.2721-2733
Hauptverfasser: Mangin, Bruno, Daroukh, Majd, Gabard, Gwénaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2733
container_issue 6
container_start_page 2721
container_title AIAA journal
container_volume 61
creator Mangin, Bruno
Daroukh, Majd
Gabard, Gwénaël
description This paper presents a multimodal method for the computation of the acoustic field in an axisymmetric varying duct with or without liner and in the presence of mean flow. The original three-dimensional equations are rearranged into a set of coupled one-dimensional equations by projecting the acoustic field over transverse basis functions. To maintain the computational efficiency of the original multimodal method (applicable without flow), only the leading-order effects of the mean flow are modeled using a multiple-scales approach. A matching procedure is also given to deal with liner discontinuities in such a duct. Two different transverse bases are used: one is based on Fourier–Bessel functions to evaluate the effect of modal scattering and the other is based on Fourier–Chebyshev polynomials to improve the method efficiency. The formulation is evaluated against analytical models based on the Wentzel–Kramers–Brillouin technique and against finite-element solutions. It is shown to give consistent results for minor computational cost for modes propagating in ducts with or without acoustic liners. This method can be easily adapted to take into account more complex flows and geometries.
doi_str_mv 10.2514/1.J062659
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04042318v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818263114</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-56f37861dc8e15b216c9b98ca6416f6ff28f42c24bbaf94f5879338521f6b8883</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWKsHv0FAEDxszeRfs8dSrVUqKlj0FrLbTZuybeom2-K3d2uLHgRPwww_3pvHQ-gcSIcK4NfQeSCSSpEeoBYIxhKmxPshahFCIAEu6DE6CWHebLSroIVeniu_MlMTnV9ib3Ev93WILsdvZl0E7Jb4ps5jwBsXZ3hQ-g0eB7ec4jgr8GNdRrfwE1Piga8WdfmtcoqOrClDcbafbTQe3L72h8no6e6-3xslhgkSEyEt6yoJk1wVIDIKMk-zVOVGcpBWWkuV5TSnPMuMTbkVqpuyJgwFKzOlFGujq53uzJR6VbmFqT61N04PeyO9vRFOOGWg1tCwFzt2VfmPughRz31dLZv3NFWUyZRxyf6nQFHJAPivb175EKrC_pgD0dsONOh9Bw17uWONM-ZX7S_4BczLgY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818263114</pqid></control><display><type>article</type><title>Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mangin, Bruno ; Daroukh, Majd ; Gabard, Gwénaël</creator><creatorcontrib>Mangin, Bruno ; Daroukh, Majd ; Gabard, Gwénaël</creatorcontrib><description>This paper presents a multimodal method for the computation of the acoustic field in an axisymmetric varying duct with or without liner and in the presence of mean flow. The original three-dimensional equations are rearranged into a set of coupled one-dimensional equations by projecting the acoustic field over transverse basis functions. To maintain the computational efficiency of the original multimodal method (applicable without flow), only the leading-order effects of the mean flow are modeled using a multiple-scales approach. A matching procedure is also given to deal with liner discontinuities in such a duct. Two different transverse bases are used: one is based on Fourier–Bessel functions to evaluate the effect of modal scattering and the other is based on Fourier–Chebyshev polynomials to improve the method efficiency. The formulation is evaluated against analytical models based on the Wentzel–Kramers–Brillouin technique and against finite-element solutions. It is shown to give consistent results for minor computational cost for modes propagating in ducts with or without acoustic liners. This method can be easily adapted to take into account more complex flows and geometries.</description><identifier>ISSN: 0001-1452</identifier><identifier>ISSN: 0740-722X</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J062659</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustic liners ; Acoustic propagation ; Acoustic waves ; Acoustics ; Basis functions ; Bessel functions ; Chebyshev approximation ; Computational efficiency ; Computing costs ; Ducts ; Engineering Sciences ; Mathematical functions ; Mathematical models ; Physics ; Polynomials ; Propagation modes ; Scattering ; Sound fields ; Surface acoustic waves ; Three dimensional flow ; Wave propagation</subject><ispartof>AIAA journal, 2023-06, Vol.61 (6), p.2721-2733</ispartof><rights>Copyright © 2023 by Bruno Mangin, Majd Daroukh, Gwénaël Gabard. Published by the American Institute. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2023 by Bruno Mangin, Majd Daroukh, Gwénaël Gabard. Published by the American Institute. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jun 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-56f37861dc8e15b216c9b98ca6416f6ff28f42c24bbaf94f5879338521f6b8883</citedby><cites>FETCH-LOGICAL-a350t-56f37861dc8e15b216c9b98ca6416f6ff28f42c24bbaf94f5879338521f6b8883</cites><orcidid>0000-0001-6502-4220 ; 0000-0001-6728-9732 ; 0000-0002-1527-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04042318$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangin, Bruno</creatorcontrib><creatorcontrib>Daroukh, Majd</creatorcontrib><creatorcontrib>Gabard, Gwénaël</creatorcontrib><title>Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation</title><title>AIAA journal</title><description>This paper presents a multimodal method for the computation of the acoustic field in an axisymmetric varying duct with or without liner and in the presence of mean flow. The original three-dimensional equations are rearranged into a set of coupled one-dimensional equations by projecting the acoustic field over transverse basis functions. To maintain the computational efficiency of the original multimodal method (applicable without flow), only the leading-order effects of the mean flow are modeled using a multiple-scales approach. A matching procedure is also given to deal with liner discontinuities in such a duct. Two different transverse bases are used: one is based on Fourier–Bessel functions to evaluate the effect of modal scattering and the other is based on Fourier–Chebyshev polynomials to improve the method efficiency. The formulation is evaluated against analytical models based on the Wentzel–Kramers–Brillouin technique and against finite-element solutions. It is shown to give consistent results for minor computational cost for modes propagating in ducts with or without acoustic liners. This method can be easily adapted to take into account more complex flows and geometries.</description><subject>Acoustic liners</subject><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Basis functions</subject><subject>Bessel functions</subject><subject>Chebyshev approximation</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Ducts</subject><subject>Engineering Sciences</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Propagation modes</subject><subject>Scattering</subject><subject>Sound fields</subject><subject>Surface acoustic waves</subject><subject>Three dimensional flow</subject><subject>Wave propagation</subject><issn>0001-1452</issn><issn>0740-722X</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LAzEQxYMoWKsHv0FAEDxszeRfs8dSrVUqKlj0FrLbTZuybeom2-K3d2uLHgRPwww_3pvHQ-gcSIcK4NfQeSCSSpEeoBYIxhKmxPshahFCIAEu6DE6CWHebLSroIVeniu_MlMTnV9ib3Ev93WILsdvZl0E7Jb4ps5jwBsXZ3hQ-g0eB7ec4jgr8GNdRrfwE1Piga8WdfmtcoqOrClDcbafbTQe3L72h8no6e6-3xslhgkSEyEt6yoJk1wVIDIKMk-zVOVGcpBWWkuV5TSnPMuMTbkVqpuyJgwFKzOlFGujq53uzJR6VbmFqT61N04PeyO9vRFOOGWg1tCwFzt2VfmPughRz31dLZv3NFWUyZRxyf6nQFHJAPivb175EKrC_pgD0dsONOh9Bw17uWONM-ZX7S_4BczLgY4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mangin, Bruno</creator><creator>Daroukh, Majd</creator><creator>Gabard, Gwénaël</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6502-4220</orcidid><orcidid>https://orcid.org/0000-0001-6728-9732</orcidid><orcidid>https://orcid.org/0000-0002-1527-4261</orcidid></search><sort><creationdate>20230601</creationdate><title>Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation</title><author>Mangin, Bruno ; Daroukh, Majd ; Gabard, Gwénaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-56f37861dc8e15b216c9b98ca6416f6ff28f42c24bbaf94f5879338521f6b8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic liners</topic><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Basis functions</topic><topic>Bessel functions</topic><topic>Chebyshev approximation</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Ducts</topic><topic>Engineering Sciences</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Propagation modes</topic><topic>Scattering</topic><topic>Sound fields</topic><topic>Surface acoustic waves</topic><topic>Three dimensional flow</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangin, Bruno</creatorcontrib><creatorcontrib>Daroukh, Majd</creatorcontrib><creatorcontrib>Gabard, Gwénaël</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangin, Bruno</au><au>Daroukh, Majd</au><au>Gabard, Gwénaël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation</atitle><jtitle>AIAA journal</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>61</volume><issue>6</issue><spage>2721</spage><epage>2733</epage><pages>2721-2733</pages><issn>0001-1452</issn><issn>0740-722X</issn><eissn>1533-385X</eissn><abstract>This paper presents a multimodal method for the computation of the acoustic field in an axisymmetric varying duct with or without liner and in the presence of mean flow. The original three-dimensional equations are rearranged into a set of coupled one-dimensional equations by projecting the acoustic field over transverse basis functions. To maintain the computational efficiency of the original multimodal method (applicable without flow), only the leading-order effects of the mean flow are modeled using a multiple-scales approach. A matching procedure is also given to deal with liner discontinuities in such a duct. Two different transverse bases are used: one is based on Fourier–Bessel functions to evaluate the effect of modal scattering and the other is based on Fourier–Chebyshev polynomials to improve the method efficiency. The formulation is evaluated against analytical models based on the Wentzel–Kramers–Brillouin technique and against finite-element solutions. It is shown to give consistent results for minor computational cost for modes propagating in ducts with or without acoustic liners. This method can be easily adapted to take into account more complex flows and geometries.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J062659</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6502-4220</orcidid><orcidid>https://orcid.org/0000-0001-6728-9732</orcidid><orcidid>https://orcid.org/0000-0002-1527-4261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2023-06, Vol.61 (6), p.2721-2733
issn 0001-1452
0740-722X
1533-385X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04042318v1
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Acoustic liners
Acoustic propagation
Acoustic waves
Acoustics
Basis functions
Bessel functions
Chebyshev approximation
Computational efficiency
Computing costs
Ducts
Engineering Sciences
Mathematical functions
Mathematical models
Physics
Polynomials
Propagation modes
Scattering
Sound fields
Surface acoustic waves
Three dimensional flow
Wave propagation
title Propagation of Acoustic Waves in Ducts with Flow Using the Multimodal Formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20Acoustic%20Waves%20in%20Ducts%20with%20Flow%20Using%20the%20Multimodal%20Formulation&rft.jtitle=AIAA%20journal&rft.au=Mangin,%20Bruno&rft.date=2023-06-01&rft.volume=61&rft.issue=6&rft.spage=2721&rft.epage=2733&rft.pages=2721-2733&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J062659&rft_dat=%3Cproquest_hal_p%3E2818263114%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818263114&rft_id=info:pmid/&rfr_iscdi=true