Charge transport in a polar metal

The fate of electric dipoles inside a Fermi sea is an old issue, yet poorly explored. Sr 1 − x Ca x TiO 3 hosts a robust but dilute ferroelectricity in a narrow ( 0.0018 < x < 0.02 ) window of substitution. This insulator becomes metallic by removal of a tiny fraction of its oxygen atoms. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum materials 2019-12, Vol.4 (1), Article 61
Hauptverfasser: Wang, Jialu, Yang, Liangwei, Rischau, Carl Willem, Xu, Zhuokai, Ren, Zhi, Lorenz, Thomas, Hemberger, Joachim, Lin, Xiao, Behnia, Kamran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj quantum materials
container_volume 4
creator Wang, Jialu
Yang, Liangwei
Rischau, Carl Willem
Xu, Zhuokai
Ren, Zhi
Lorenz, Thomas
Hemberger, Joachim
Lin, Xiao
Behnia, Kamran
description The fate of electric dipoles inside a Fermi sea is an old issue, yet poorly explored. Sr 1 − x Ca x TiO 3 hosts a robust but dilute ferroelectricity in a narrow ( 0.0018 < x < 0.02 ) window of substitution. This insulator becomes metallic by removal of a tiny fraction of its oxygen atoms. Here, we present a detailed study of low-temperature charge transport in Sr 1 − x Ca x TiO 3 − δ , documenting the evolution of resistivity with increasing carrier concentration ( n ). Below a threshold carrier concentration, n * ( x ) , the polar structural-phase transition has a clear signature in resistivity and Ca substitution significantly reduces the 2 K mobility at a given carrier density. For three different Ca concentrations, we find that the phase transition fades away when one mobile electron is introduced for about 7.9 ± 0.6  dipoles. This threshold corresponds to the expected peak in anti-ferroelectric coupling mediated by a diplolar counterpart of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction. Our results imply that the transition is driven by dipole–dipole interaction, even in presence of a dilute Fermi sea. Charge transport for n < n * ( x ) shows a non-monotonic temperature dependence, most probably caused by scattering off the transverse optical phonon mode. A quantitative explanation of charge transport in this polar metal remains a challenge to theory. For n ≥ n * ( x ) , resistivity follows a T-square behavior together with slight upturns (in both Ca-free and Ca-substituted samples). The latter are reminiscent of Kondo effect and most probably due to oxygen vacancies.
doi_str_mv 10.1038/s41535-019-0200-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04036635v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389702695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-4dac675e7d6ca6b7eab5b8f74696120829f08792eecabf05c408c24b9612f5ea3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsNT-AG8RTx5WZ793j6VoKxS86HmZpJt-kCZxNxX89yZE1IunGWaeeRkeQq4Z3DMQ9iFJpoSiwBwFDkDZGZlw4QyVWtrzP_0lmaV0AADOmJVaT8jNYodxG7IuYp3aJnbZvs4wa5sKY3YMHVZX5KLEKoXZd52St6fH18WKrl-Wz4v5mhZSuY7KDRbaqGA2ukCdm4C5ym1ppHaacbDclWCN4yEUmJegCgm24DIftqUKKKbkbszdYeXbuD9i_PQN7v1qvvbDDCQIrYX6YD17O7JtbN5PIXX-0Jxi3b_nubDOANdO9RQbqSI2KcVQ_sQy8IM4P4rzvTg_iPNDMh9vUs_W2xB_k_8_-gKQyW0U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389702695</pqid></control><display><type>article</type><title>Charge transport in a polar metal</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Wang, Jialu ; Yang, Liangwei ; Rischau, Carl Willem ; Xu, Zhuokai ; Ren, Zhi ; Lorenz, Thomas ; Hemberger, Joachim ; Lin, Xiao ; Behnia, Kamran</creator><creatorcontrib>Wang, Jialu ; Yang, Liangwei ; Rischau, Carl Willem ; Xu, Zhuokai ; Ren, Zhi ; Lorenz, Thomas ; Hemberger, Joachim ; Lin, Xiao ; Behnia, Kamran</creatorcontrib><description>The fate of electric dipoles inside a Fermi sea is an old issue, yet poorly explored. Sr 1 − x Ca x TiO 3 hosts a robust but dilute ferroelectricity in a narrow ( 0.0018 &lt; x &lt; 0.02 ) window of substitution. This insulator becomes metallic by removal of a tiny fraction of its oxygen atoms. Here, we present a detailed study of low-temperature charge transport in Sr 1 − x Ca x TiO 3 − δ , documenting the evolution of resistivity with increasing carrier concentration ( n ). Below a threshold carrier concentration, n * ( x ) , the polar structural-phase transition has a clear signature in resistivity and Ca substitution significantly reduces the 2 K mobility at a given carrier density. For three different Ca concentrations, we find that the phase transition fades away when one mobile electron is introduced for about 7.9 ± 0.6  dipoles. This threshold corresponds to the expected peak in anti-ferroelectric coupling mediated by a diplolar counterpart of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction. Our results imply that the transition is driven by dipole–dipole interaction, even in presence of a dilute Fermi sea. Charge transport for n &lt; n * ( x ) shows a non-monotonic temperature dependence, most probably caused by scattering off the transverse optical phonon mode. A quantitative explanation of charge transport in this polar metal remains a challenge to theory. For n ≥ n * ( x ) , resistivity follows a T-square behavior together with slight upturns (in both Ca-free and Ca-substituted samples). The latter are reminiscent of Kondo effect and most probably due to oxygen vacancies.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-019-0200-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/2795 ; 639/766/119/995 ; Antiferroelectricity ; Carrier density ; Charge transport ; Condensed Matter Physics ; Dilution ; Dipole interactions ; Electric dipoles ; Electrical resistivity ; Ferroelectric materials ; Ferroelectricity ; Kondo effect ; Low temperature ; Oxygen atoms ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Physics ; Strontium ; Structural Materials ; Substitutes ; Surfaces and Interfaces ; Temperature dependence ; Thin Films</subject><ispartof>npj quantum materials, 2019-12, Vol.4 (1), Article 61</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-4dac675e7d6ca6b7eab5b8f74696120829f08792eecabf05c408c24b9612f5ea3</citedby><cites>FETCH-LOGICAL-c459t-4dac675e7d6ca6b7eab5b8f74696120829f08792eecabf05c408c24b9612f5ea3</cites><orcidid>0000-0003-4832-5157 ; 0000-0002-1773-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41535-019-0200-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41535-019-0200-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27901,27902,41096,42165,51551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04036635$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Yang, Liangwei</creatorcontrib><creatorcontrib>Rischau, Carl Willem</creatorcontrib><creatorcontrib>Xu, Zhuokai</creatorcontrib><creatorcontrib>Ren, Zhi</creatorcontrib><creatorcontrib>Lorenz, Thomas</creatorcontrib><creatorcontrib>Hemberger, Joachim</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Behnia, Kamran</creatorcontrib><title>Charge transport in a polar metal</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>The fate of electric dipoles inside a Fermi sea is an old issue, yet poorly explored. Sr 1 − x Ca x TiO 3 hosts a robust but dilute ferroelectricity in a narrow ( 0.0018 &lt; x &lt; 0.02 ) window of substitution. This insulator becomes metallic by removal of a tiny fraction of its oxygen atoms. Here, we present a detailed study of low-temperature charge transport in Sr 1 − x Ca x TiO 3 − δ , documenting the evolution of resistivity with increasing carrier concentration ( n ). Below a threshold carrier concentration, n * ( x ) , the polar structural-phase transition has a clear signature in resistivity and Ca substitution significantly reduces the 2 K mobility at a given carrier density. For three different Ca concentrations, we find that the phase transition fades away when one mobile electron is introduced for about 7.9 ± 0.6  dipoles. This threshold corresponds to the expected peak in anti-ferroelectric coupling mediated by a diplolar counterpart of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction. Our results imply that the transition is driven by dipole–dipole interaction, even in presence of a dilute Fermi sea. Charge transport for n &lt; n * ( x ) shows a non-monotonic temperature dependence, most probably caused by scattering off the transverse optical phonon mode. A quantitative explanation of charge transport in this polar metal remains a challenge to theory. For n ≥ n * ( x ) , resistivity follows a T-square behavior together with slight upturns (in both Ca-free and Ca-substituted samples). The latter are reminiscent of Kondo effect and most probably due to oxygen vacancies.</description><subject>639/766/119/1003</subject><subject>639/766/119/2795</subject><subject>639/766/119/995</subject><subject>Antiferroelectricity</subject><subject>Carrier density</subject><subject>Charge transport</subject><subject>Condensed Matter Physics</subject><subject>Dilution</subject><subject>Dipole interactions</subject><subject>Electric dipoles</subject><subject>Electrical resistivity</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Kondo effect</subject><subject>Low temperature</subject><subject>Oxygen atoms</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Strontium</subject><subject>Structural Materials</subject><subject>Substitutes</subject><subject>Surfaces and Interfaces</subject><subject>Temperature dependence</subject><subject>Thin Films</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsNT-AG8RTx5WZ793j6VoKxS86HmZpJt-kCZxNxX89yZE1IunGWaeeRkeQq4Z3DMQ9iFJpoSiwBwFDkDZGZlw4QyVWtrzP_0lmaV0AADOmJVaT8jNYodxG7IuYp3aJnbZvs4wa5sKY3YMHVZX5KLEKoXZd52St6fH18WKrl-Wz4v5mhZSuY7KDRbaqGA2ukCdm4C5ym1ppHaacbDclWCN4yEUmJegCgm24DIftqUKKKbkbszdYeXbuD9i_PQN7v1qvvbDDCQIrYX6YD17O7JtbN5PIXX-0Jxi3b_nubDOANdO9RQbqSI2KcVQ_sQy8IM4P4rzvTg_iPNDMh9vUs_W2xB_k_8_-gKQyW0U</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Wang, Jialu</creator><creator>Yang, Liangwei</creator><creator>Rischau, Carl Willem</creator><creator>Xu, Zhuokai</creator><creator>Ren, Zhi</creator><creator>Lorenz, Thomas</creator><creator>Hemberger, Joachim</creator><creator>Lin, Xiao</creator><creator>Behnia, Kamran</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4832-5157</orcidid><orcidid>https://orcid.org/0000-0002-1773-1761</orcidid></search><sort><creationdate>20191212</creationdate><title>Charge transport in a polar metal</title><author>Wang, Jialu ; Yang, Liangwei ; Rischau, Carl Willem ; Xu, Zhuokai ; Ren, Zhi ; Lorenz, Thomas ; Hemberger, Joachim ; Lin, Xiao ; Behnia, Kamran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-4dac675e7d6ca6b7eab5b8f74696120829f08792eecabf05c408c24b9612f5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/2795</topic><topic>639/766/119/995</topic><topic>Antiferroelectricity</topic><topic>Carrier density</topic><topic>Charge transport</topic><topic>Condensed Matter Physics</topic><topic>Dilution</topic><topic>Dipole interactions</topic><topic>Electric dipoles</topic><topic>Electrical resistivity</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Kondo effect</topic><topic>Low temperature</topic><topic>Oxygen atoms</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Strontium</topic><topic>Structural Materials</topic><topic>Substitutes</topic><topic>Surfaces and Interfaces</topic><topic>Temperature dependence</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Yang, Liangwei</creatorcontrib><creatorcontrib>Rischau, Carl Willem</creatorcontrib><creatorcontrib>Xu, Zhuokai</creatorcontrib><creatorcontrib>Ren, Zhi</creatorcontrib><creatorcontrib>Lorenz, Thomas</creatorcontrib><creatorcontrib>Hemberger, Joachim</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Behnia, Kamran</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jialu</au><au>Yang, Liangwei</au><au>Rischau, Carl Willem</au><au>Xu, Zhuokai</au><au>Ren, Zhi</au><au>Lorenz, Thomas</au><au>Hemberger, Joachim</au><au>Lin, Xiao</au><au>Behnia, Kamran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge transport in a polar metal</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2019-12-12</date><risdate>2019</risdate><volume>4</volume><issue>1</issue><artnum>61</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>The fate of electric dipoles inside a Fermi sea is an old issue, yet poorly explored. Sr 1 − x Ca x TiO 3 hosts a robust but dilute ferroelectricity in a narrow ( 0.0018 &lt; x &lt; 0.02 ) window of substitution. This insulator becomes metallic by removal of a tiny fraction of its oxygen atoms. Here, we present a detailed study of low-temperature charge transport in Sr 1 − x Ca x TiO 3 − δ , documenting the evolution of resistivity with increasing carrier concentration ( n ). Below a threshold carrier concentration, n * ( x ) , the polar structural-phase transition has a clear signature in resistivity and Ca substitution significantly reduces the 2 K mobility at a given carrier density. For three different Ca concentrations, we find that the phase transition fades away when one mobile electron is introduced for about 7.9 ± 0.6  dipoles. This threshold corresponds to the expected peak in anti-ferroelectric coupling mediated by a diplolar counterpart of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction. Our results imply that the transition is driven by dipole–dipole interaction, even in presence of a dilute Fermi sea. Charge transport for n &lt; n * ( x ) shows a non-monotonic temperature dependence, most probably caused by scattering off the transverse optical phonon mode. A quantitative explanation of charge transport in this polar metal remains a challenge to theory. For n ≥ n * ( x ) , resistivity follows a T-square behavior together with slight upturns (in both Ca-free and Ca-substituted samples). The latter are reminiscent of Kondo effect and most probably due to oxygen vacancies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-019-0200-1</doi><orcidid>https://orcid.org/0000-0003-4832-5157</orcidid><orcidid>https://orcid.org/0000-0002-1773-1761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-4648
ispartof npj quantum materials, 2019-12, Vol.4 (1), Article 61
issn 2397-4648
2397-4648
language eng
recordid cdi_hal_primary_oai_HAL_hal_04036635v1
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects 639/766/119/1003
639/766/119/2795
639/766/119/995
Antiferroelectricity
Carrier density
Charge transport
Condensed Matter Physics
Dilution
Dipole interactions
Electric dipoles
Electrical resistivity
Ferroelectric materials
Ferroelectricity
Kondo effect
Low temperature
Oxygen atoms
Phase transitions
Physics
Physics and Astronomy
Quantum Physics
Strontium
Structural Materials
Substitutes
Surfaces and Interfaces
Temperature dependence
Thin Films
title Charge transport in a polar metal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20transport%20in%20a%20polar%20metal&rft.jtitle=npj%20quantum%20materials&rft.au=Wang,%20Jialu&rft.date=2019-12-12&rft.volume=4&rft.issue=1&rft.artnum=61&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-019-0200-1&rft_dat=%3Cproquest_hal_p%3E2389702695%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389702695&rft_id=info:pmid/&rfr_iscdi=true