Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica

BACKGROUND The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2023-07, Vol.103 (9), p.4692-4703
Hauptverfasser: Sarzynski, Thuan, Bertrand, Benoît, Rigal, Clément, Marraccini, Pierre, Vaast, Philippe, Georget, Frédéric, Campa, Claudine, Abdallah, Cécile, Nguyen, Chang Thi Quynh, Nguyen, Hung Phi, Nguyen, Hai Thi Thanh, Ngoc, Quyen Luu, Ngan, Giang Khong, Viet, Thang Vu, Navarini, Luciano, Lonzarich, Valentina, Bossolasco, Laurent, Etienne, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4703
container_issue 9
container_start_page 4692
container_title Journal of the science of food and agriculture
container_volume 103
creator Sarzynski, Thuan
Bertrand, Benoît
Rigal, Clément
Marraccini, Pierre
Vaast, Philippe
Georget, Frédéric
Campa, Claudine
Abdallah, Cécile
Nguyen, Chang Thi Quynh
Nguyen, Hung Phi
Nguyen, Hai Thi Thanh
Ngoc, Quyen Luu
Ngan, Giang Khong
Viet, Thang Vu
Navarini, Luciano
Lonzarich, Valentina
Bossolasco, Laurent
Etienne, Hervé
description BACKGROUND The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
doi_str_mv 10.1002/jsfa.12544
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04034559v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822202439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</originalsourceid><addsrcrecordid>eNp9kcGO0zAURS0EYjoDGz4AWWIDSBmeHdtJllXFzIAqsQDWluO-qK4Su9hpUXd8AAu-kS8Zh5RZsGBl-d1zr97TJeQFg2sGwN_tUmeuGZdCPCILBk1VADB4TBZZ5IVkgl-Qy5R2ANA0Sj0lF6VqQLK6XJCft-hxdPb3j1_ojy4GP6AfqfMjRmNHF3yixm-o7d1gMkePJjrT9pgodh3akQZPWzSe7ren5Kzpqd2ayYrRpWw427c4zGIY9iG5KZiGjq5CDjE0G9osPyNPOtMnfH5-r8jXm_dfVnfF-tPth9VyXVjBK1HU0DDG2q6UvK7brrNiAzLPGm5Q5a9SQogGFRctZ7WSgLysKmBVKU2GsLwib-bcren1PubL4kkH4_Tdcq2nGQgohZTNsczs65ndx_DtgGnUg0sW-954DIekeVUrBkLWVUZf_YPuwiH6fInmNeccuCibTL2dKRtDShG7hw0Y6KlPPfWp__SZ4ZfnyEM74OYB_VtgBtgMfHc9nv4TpT9-vlnOofdoxKt1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822202439</pqid></control><display><type>article</type><title>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sarzynski, Thuan ; Bertrand, Benoît ; Rigal, Clément ; Marraccini, Pierre ; Vaast, Philippe ; Georget, Frédéric ; Campa, Claudine ; Abdallah, Cécile ; Nguyen, Chang Thi Quynh ; Nguyen, Hung Phi ; Nguyen, Hai Thi Thanh ; Ngoc, Quyen Luu ; Ngan, Giang Khong ; Viet, Thang Vu ; Navarini, Luciano ; Lonzarich, Valentina ; Bossolasco, Laurent ; Etienne, Hervé</creator><creatorcontrib>Sarzynski, Thuan ; Bertrand, Benoît ; Rigal, Clément ; Marraccini, Pierre ; Vaast, Philippe ; Georget, Frédéric ; Campa, Claudine ; Abdallah, Cécile ; Nguyen, Chang Thi Quynh ; Nguyen, Hung Phi ; Nguyen, Hai Thi Thanh ; Ngoc, Quyen Luu ; Ngan, Giang Khong ; Viet, Thang Vu ; Navarini, Luciano ; Lonzarich, Valentina ; Bossolasco, Laurent ; Etienne, Hervé</creatorcontrib><description>BACKGROUND The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.12544</identifier><identifier>PMID: 36905183</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Agricultural sciences ; Agronomy ; bean chemical content ; Beans ; Benzaldehyde ; Benzene ; Butanediol ; Chemical composition ; Chemical compounds ; Climate change ; Climate effects ; Climatic conditions ; Coffea arabica ; Coffee ; Dodecane ; Environmental effects ; Environmental Sciences ; Ethanol ; Flowering ; genetic–environment interactions ; Genotype &amp; phenotype ; Genotype-environment interactions ; Genotypes ; Global Changes ; Life Sciences ; Lipids ; Moisture content ; Mountain regions ; Phenylacetaldehyde ; Physical characteristics ; Physical properties ; Rainfall ; Soil temperature ; Soil water ; Vapor pressure ; Volatile compounds ; Volatiles ; Water content</subject><ispartof>Journal of the science of food and agriculture, 2023-07, Vol.103 (9), p.4692-4703</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</rights><rights>2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</citedby><cites>FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</cites><orcidid>0000-0003-1106-5363 ; 0000-0002-6208-9982 ; 0000-0001-7637-6811 ; 0000-0002-6210-1101 ; 0000-0002-2971-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.12544$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.12544$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36905183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04034559$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarzynski, Thuan</creatorcontrib><creatorcontrib>Bertrand, Benoît</creatorcontrib><creatorcontrib>Rigal, Clément</creatorcontrib><creatorcontrib>Marraccini, Pierre</creatorcontrib><creatorcontrib>Vaast, Philippe</creatorcontrib><creatorcontrib>Georget, Frédéric</creatorcontrib><creatorcontrib>Campa, Claudine</creatorcontrib><creatorcontrib>Abdallah, Cécile</creatorcontrib><creatorcontrib>Nguyen, Chang Thi Quynh</creatorcontrib><creatorcontrib>Nguyen, Hung Phi</creatorcontrib><creatorcontrib>Nguyen, Hai Thi Thanh</creatorcontrib><creatorcontrib>Ngoc, Quyen Luu</creatorcontrib><creatorcontrib>Ngan, Giang Khong</creatorcontrib><creatorcontrib>Viet, Thang Vu</creatorcontrib><creatorcontrib>Navarini, Luciano</creatorcontrib><creatorcontrib>Lonzarich, Valentina</creatorcontrib><creatorcontrib>Bossolasco, Laurent</creatorcontrib><creatorcontrib>Etienne, Hervé</creatorcontrib><title>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</description><subject>Agricultural sciences</subject><subject>Agronomy</subject><subject>bean chemical content</subject><subject>Beans</subject><subject>Benzaldehyde</subject><subject>Benzene</subject><subject>Butanediol</subject><subject>Chemical composition</subject><subject>Chemical compounds</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climatic conditions</subject><subject>Coffea arabica</subject><subject>Coffee</subject><subject>Dodecane</subject><subject>Environmental effects</subject><subject>Environmental Sciences</subject><subject>Ethanol</subject><subject>Flowering</subject><subject>genetic–environment interactions</subject><subject>Genotype &amp; phenotype</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Global Changes</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Moisture content</subject><subject>Mountain regions</subject><subject>Phenylacetaldehyde</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Rainfall</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Vapor pressure</subject><subject>Volatile compounds</subject><subject>Volatiles</subject><subject>Water content</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcGO0zAURS0EYjoDGz4AWWIDSBmeHdtJllXFzIAqsQDWluO-qK4Su9hpUXd8AAu-kS8Zh5RZsGBl-d1zr97TJeQFg2sGwN_tUmeuGZdCPCILBk1VADB4TBZZ5IVkgl-Qy5R2ANA0Sj0lF6VqQLK6XJCft-hxdPb3j1_ojy4GP6AfqfMjRmNHF3yixm-o7d1gMkePJjrT9pgodh3akQZPWzSe7ren5Kzpqd2ayYrRpWw427c4zGIY9iG5KZiGjq5CDjE0G9osPyNPOtMnfH5-r8jXm_dfVnfF-tPth9VyXVjBK1HU0DDG2q6UvK7brrNiAzLPGm5Q5a9SQogGFRctZ7WSgLysKmBVKU2GsLwib-bcren1PubL4kkH4_Tdcq2nGQgohZTNsczs65ndx_DtgGnUg0sW-954DIekeVUrBkLWVUZf_YPuwiH6fInmNeccuCibTL2dKRtDShG7hw0Y6KlPPfWp__SZ4ZfnyEM74OYB_VtgBtgMfHc9nv4TpT9-vlnOofdoxKt1</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Sarzynski, Thuan</creator><creator>Bertrand, Benoît</creator><creator>Rigal, Clément</creator><creator>Marraccini, Pierre</creator><creator>Vaast, Philippe</creator><creator>Georget, Frédéric</creator><creator>Campa, Claudine</creator><creator>Abdallah, Cécile</creator><creator>Nguyen, Chang Thi Quynh</creator><creator>Nguyen, Hung Phi</creator><creator>Nguyen, Hai Thi Thanh</creator><creator>Ngoc, Quyen Luu</creator><creator>Ngan, Giang Khong</creator><creator>Viet, Thang Vu</creator><creator>Navarini, Luciano</creator><creator>Lonzarich, Valentina</creator><creator>Bossolasco, Laurent</creator><creator>Etienne, Hervé</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1106-5363</orcidid><orcidid>https://orcid.org/0000-0002-6208-9982</orcidid><orcidid>https://orcid.org/0000-0001-7637-6811</orcidid><orcidid>https://orcid.org/0000-0002-6210-1101</orcidid><orcidid>https://orcid.org/0000-0002-2971-3210</orcidid></search><sort><creationdate>202307</creationdate><title>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</title><author>Sarzynski, Thuan ; Bertrand, Benoît ; Rigal, Clément ; Marraccini, Pierre ; Vaast, Philippe ; Georget, Frédéric ; Campa, Claudine ; Abdallah, Cécile ; Nguyen, Chang Thi Quynh ; Nguyen, Hung Phi ; Nguyen, Hai Thi Thanh ; Ngoc, Quyen Luu ; Ngan, Giang Khong ; Viet, Thang Vu ; Navarini, Luciano ; Lonzarich, Valentina ; Bossolasco, Laurent ; Etienne, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural sciences</topic><topic>Agronomy</topic><topic>bean chemical content</topic><topic>Beans</topic><topic>Benzaldehyde</topic><topic>Benzene</topic><topic>Butanediol</topic><topic>Chemical composition</topic><topic>Chemical compounds</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climatic conditions</topic><topic>Coffea arabica</topic><topic>Coffee</topic><topic>Dodecane</topic><topic>Environmental effects</topic><topic>Environmental Sciences</topic><topic>Ethanol</topic><topic>Flowering</topic><topic>genetic–environment interactions</topic><topic>Genotype &amp; phenotype</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Global Changes</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Moisture content</topic><topic>Mountain regions</topic><topic>Phenylacetaldehyde</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Rainfall</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Vapor pressure</topic><topic>Volatile compounds</topic><topic>Volatiles</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarzynski, Thuan</creatorcontrib><creatorcontrib>Bertrand, Benoît</creatorcontrib><creatorcontrib>Rigal, Clément</creatorcontrib><creatorcontrib>Marraccini, Pierre</creatorcontrib><creatorcontrib>Vaast, Philippe</creatorcontrib><creatorcontrib>Georget, Frédéric</creatorcontrib><creatorcontrib>Campa, Claudine</creatorcontrib><creatorcontrib>Abdallah, Cécile</creatorcontrib><creatorcontrib>Nguyen, Chang Thi Quynh</creatorcontrib><creatorcontrib>Nguyen, Hung Phi</creatorcontrib><creatorcontrib>Nguyen, Hai Thi Thanh</creatorcontrib><creatorcontrib>Ngoc, Quyen Luu</creatorcontrib><creatorcontrib>Ngan, Giang Khong</creatorcontrib><creatorcontrib>Viet, Thang Vu</creatorcontrib><creatorcontrib>Navarini, Luciano</creatorcontrib><creatorcontrib>Lonzarich, Valentina</creatorcontrib><creatorcontrib>Bossolasco, Laurent</creatorcontrib><creatorcontrib>Etienne, Hervé</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarzynski, Thuan</au><au>Bertrand, Benoît</au><au>Rigal, Clément</au><au>Marraccini, Pierre</au><au>Vaast, Philippe</au><au>Georget, Frédéric</au><au>Campa, Claudine</au><au>Abdallah, Cécile</au><au>Nguyen, Chang Thi Quynh</au><au>Nguyen, Hung Phi</au><au>Nguyen, Hai Thi Thanh</au><au>Ngoc, Quyen Luu</au><au>Ngan, Giang Khong</au><au>Viet, Thang Vu</au><au>Navarini, Luciano</au><au>Lonzarich, Valentina</au><au>Bossolasco, Laurent</au><au>Etienne, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2023-07</date><risdate>2023</risdate><volume>103</volume><issue>9</issue><spage>4692</spage><epage>4703</epage><pages>4692-4703</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>36905183</pmid><doi>10.1002/jsfa.12544</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1106-5363</orcidid><orcidid>https://orcid.org/0000-0002-6208-9982</orcidid><orcidid>https://orcid.org/0000-0001-7637-6811</orcidid><orcidid>https://orcid.org/0000-0002-6210-1101</orcidid><orcidid>https://orcid.org/0000-0002-2971-3210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2023-07, Vol.103 (9), p.4692-4703
issn 0022-5142
1097-0010
language eng
recordid cdi_hal_primary_oai_HAL_hal_04034559v3
source Wiley Online Library Journals Frontfile Complete
subjects Agricultural sciences
Agronomy
bean chemical content
Beans
Benzaldehyde
Benzene
Butanediol
Chemical composition
Chemical compounds
Climate change
Climate effects
Climatic conditions
Coffea arabica
Coffee
Dodecane
Environmental effects
Environmental Sciences
Ethanol
Flowering
genetic–environment interactions
Genotype & phenotype
Genotype-environment interactions
Genotypes
Global Changes
Life Sciences
Lipids
Moisture content
Mountain regions
Phenylacetaldehyde
Physical characteristics
Physical properties
Rainfall
Soil temperature
Soil water
Vapor pressure
Volatile compounds
Volatiles
Water content
title Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%E2%80%90environment%20interactions%20and%20climatic%20variables%20effect%20on%20bean%20physical%20characteristics%20and%20chemical%20composition%20of%20Coffea%20arabica&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Sarzynski,%20Thuan&rft.date=2023-07&rft.volume=103&rft.issue=9&rft.spage=4692&rft.epage=4703&rft.pages=4692-4703&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.12544&rft_dat=%3Cproquest_hal_p%3E2822202439%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822202439&rft_id=info:pmid/36905183&rfr_iscdi=true