Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica
BACKGROUND The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of t...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2023-07, Vol.103 (9), p.4692-4703 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4703 |
---|---|
container_issue | 9 |
container_start_page | 4692 |
container_title | Journal of the science of food and agriculture |
container_volume | 103 |
creator | Sarzynski, Thuan Bertrand, Benoît Rigal, Clément Marraccini, Pierre Vaast, Philippe Georget, Frédéric Campa, Claudine Abdallah, Cécile Nguyen, Chang Thi Quynh Nguyen, Hung Phi Nguyen, Hai Thi Thanh Ngoc, Quyen Luu Ngan, Giang Khong Viet, Thang Vu Navarini, Luciano Lonzarich, Valentina Bossolasco, Laurent Etienne, Hervé |
description | BACKGROUND
The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed.
RESULTS
We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change.
CONCLUSION
This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. |
doi_str_mv | 10.1002/jsfa.12544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04034559v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822202439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</originalsourceid><addsrcrecordid>eNp9kcGO0zAURS0EYjoDGz4AWWIDSBmeHdtJllXFzIAqsQDWluO-qK4Su9hpUXd8AAu-kS8Zh5RZsGBl-d1zr97TJeQFg2sGwN_tUmeuGZdCPCILBk1VADB4TBZZ5IVkgl-Qy5R2ANA0Sj0lF6VqQLK6XJCft-hxdPb3j1_ojy4GP6AfqfMjRmNHF3yixm-o7d1gMkePJjrT9pgodh3akQZPWzSe7ren5Kzpqd2ayYrRpWw427c4zGIY9iG5KZiGjq5CDjE0G9osPyNPOtMnfH5-r8jXm_dfVnfF-tPth9VyXVjBK1HU0DDG2q6UvK7brrNiAzLPGm5Q5a9SQogGFRctZ7WSgLysKmBVKU2GsLwib-bcren1PubL4kkH4_Tdcq2nGQgohZTNsczs65ndx_DtgGnUg0sW-954DIekeVUrBkLWVUZf_YPuwiH6fInmNeccuCibTL2dKRtDShG7hw0Y6KlPPfWp__SZ4ZfnyEM74OYB_VtgBtgMfHc9nv4TpT9-vlnOofdoxKt1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822202439</pqid></control><display><type>article</type><title>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sarzynski, Thuan ; Bertrand, Benoît ; Rigal, Clément ; Marraccini, Pierre ; Vaast, Philippe ; Georget, Frédéric ; Campa, Claudine ; Abdallah, Cécile ; Nguyen, Chang Thi Quynh ; Nguyen, Hung Phi ; Nguyen, Hai Thi Thanh ; Ngoc, Quyen Luu ; Ngan, Giang Khong ; Viet, Thang Vu ; Navarini, Luciano ; Lonzarich, Valentina ; Bossolasco, Laurent ; Etienne, Hervé</creator><creatorcontrib>Sarzynski, Thuan ; Bertrand, Benoît ; Rigal, Clément ; Marraccini, Pierre ; Vaast, Philippe ; Georget, Frédéric ; Campa, Claudine ; Abdallah, Cécile ; Nguyen, Chang Thi Quynh ; Nguyen, Hung Phi ; Nguyen, Hai Thi Thanh ; Ngoc, Quyen Luu ; Ngan, Giang Khong ; Viet, Thang Vu ; Navarini, Luciano ; Lonzarich, Valentina ; Bossolasco, Laurent ; Etienne, Hervé</creatorcontrib><description>BACKGROUND
The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed.
RESULTS
We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change.
CONCLUSION
This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.12544</identifier><identifier>PMID: 36905183</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agricultural sciences ; Agronomy ; bean chemical content ; Beans ; Benzaldehyde ; Benzene ; Butanediol ; Chemical composition ; Chemical compounds ; Climate change ; Climate effects ; Climatic conditions ; Coffea arabica ; Coffee ; Dodecane ; Environmental effects ; Environmental Sciences ; Ethanol ; Flowering ; genetic–environment interactions ; Genotype & phenotype ; Genotype-environment interactions ; Genotypes ; Global Changes ; Life Sciences ; Lipids ; Moisture content ; Mountain regions ; Phenylacetaldehyde ; Physical characteristics ; Physical properties ; Rainfall ; Soil temperature ; Soil water ; Vapor pressure ; Volatile compounds ; Volatiles ; Water content</subject><ispartof>Journal of the science of food and agriculture, 2023-07, Vol.103 (9), p.4692-4703</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</rights><rights>2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</citedby><cites>FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</cites><orcidid>0000-0003-1106-5363 ; 0000-0002-6208-9982 ; 0000-0001-7637-6811 ; 0000-0002-6210-1101 ; 0000-0002-2971-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.12544$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.12544$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36905183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04034559$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarzynski, Thuan</creatorcontrib><creatorcontrib>Bertrand, Benoît</creatorcontrib><creatorcontrib>Rigal, Clément</creatorcontrib><creatorcontrib>Marraccini, Pierre</creatorcontrib><creatorcontrib>Vaast, Philippe</creatorcontrib><creatorcontrib>Georget, Frédéric</creatorcontrib><creatorcontrib>Campa, Claudine</creatorcontrib><creatorcontrib>Abdallah, Cécile</creatorcontrib><creatorcontrib>Nguyen, Chang Thi Quynh</creatorcontrib><creatorcontrib>Nguyen, Hung Phi</creatorcontrib><creatorcontrib>Nguyen, Hai Thi Thanh</creatorcontrib><creatorcontrib>Ngoc, Quyen Luu</creatorcontrib><creatorcontrib>Ngan, Giang Khong</creatorcontrib><creatorcontrib>Viet, Thang Vu</creatorcontrib><creatorcontrib>Navarini, Luciano</creatorcontrib><creatorcontrib>Lonzarich, Valentina</creatorcontrib><creatorcontrib>Bossolasco, Laurent</creatorcontrib><creatorcontrib>Etienne, Hervé</creatorcontrib><title>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed.
RESULTS
We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change.
CONCLUSION
This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</description><subject>Agricultural sciences</subject><subject>Agronomy</subject><subject>bean chemical content</subject><subject>Beans</subject><subject>Benzaldehyde</subject><subject>Benzene</subject><subject>Butanediol</subject><subject>Chemical composition</subject><subject>Chemical compounds</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climatic conditions</subject><subject>Coffea arabica</subject><subject>Coffee</subject><subject>Dodecane</subject><subject>Environmental effects</subject><subject>Environmental Sciences</subject><subject>Ethanol</subject><subject>Flowering</subject><subject>genetic–environment interactions</subject><subject>Genotype & phenotype</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Global Changes</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Moisture content</subject><subject>Mountain regions</subject><subject>Phenylacetaldehyde</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Rainfall</subject><subject>Soil temperature</subject><subject>Soil water</subject><subject>Vapor pressure</subject><subject>Volatile compounds</subject><subject>Volatiles</subject><subject>Water content</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcGO0zAURS0EYjoDGz4AWWIDSBmeHdtJllXFzIAqsQDWluO-qK4Su9hpUXd8AAu-kS8Zh5RZsGBl-d1zr97TJeQFg2sGwN_tUmeuGZdCPCILBk1VADB4TBZZ5IVkgl-Qy5R2ANA0Sj0lF6VqQLK6XJCft-hxdPb3j1_ojy4GP6AfqfMjRmNHF3yixm-o7d1gMkePJjrT9pgodh3akQZPWzSe7ren5Kzpqd2ayYrRpWw427c4zGIY9iG5KZiGjq5CDjE0G9osPyNPOtMnfH5-r8jXm_dfVnfF-tPth9VyXVjBK1HU0DDG2q6UvK7brrNiAzLPGm5Q5a9SQogGFRctZ7WSgLysKmBVKU2GsLwib-bcren1PubL4kkH4_Tdcq2nGQgohZTNsczs65ndx_DtgGnUg0sW-954DIekeVUrBkLWVUZf_YPuwiH6fInmNeccuCibTL2dKRtDShG7hw0Y6KlPPfWp__SZ4ZfnyEM74OYB_VtgBtgMfHc9nv4TpT9-vlnOofdoxKt1</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Sarzynski, Thuan</creator><creator>Bertrand, Benoît</creator><creator>Rigal, Clément</creator><creator>Marraccini, Pierre</creator><creator>Vaast, Philippe</creator><creator>Georget, Frédéric</creator><creator>Campa, Claudine</creator><creator>Abdallah, Cécile</creator><creator>Nguyen, Chang Thi Quynh</creator><creator>Nguyen, Hung Phi</creator><creator>Nguyen, Hai Thi Thanh</creator><creator>Ngoc, Quyen Luu</creator><creator>Ngan, Giang Khong</creator><creator>Viet, Thang Vu</creator><creator>Navarini, Luciano</creator><creator>Lonzarich, Valentina</creator><creator>Bossolasco, Laurent</creator><creator>Etienne, Hervé</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1106-5363</orcidid><orcidid>https://orcid.org/0000-0002-6208-9982</orcidid><orcidid>https://orcid.org/0000-0001-7637-6811</orcidid><orcidid>https://orcid.org/0000-0002-6210-1101</orcidid><orcidid>https://orcid.org/0000-0002-2971-3210</orcidid></search><sort><creationdate>202307</creationdate><title>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</title><author>Sarzynski, Thuan ; Bertrand, Benoît ; Rigal, Clément ; Marraccini, Pierre ; Vaast, Philippe ; Georget, Frédéric ; Campa, Claudine ; Abdallah, Cécile ; Nguyen, Chang Thi Quynh ; Nguyen, Hung Phi ; Nguyen, Hai Thi Thanh ; Ngoc, Quyen Luu ; Ngan, Giang Khong ; Viet, Thang Vu ; Navarini, Luciano ; Lonzarich, Valentina ; Bossolasco, Laurent ; Etienne, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4274-809111bf35288bffc4d0509192ae6ffc664449e624b218650e237701735a192e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural sciences</topic><topic>Agronomy</topic><topic>bean chemical content</topic><topic>Beans</topic><topic>Benzaldehyde</topic><topic>Benzene</topic><topic>Butanediol</topic><topic>Chemical composition</topic><topic>Chemical compounds</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climatic conditions</topic><topic>Coffea arabica</topic><topic>Coffee</topic><topic>Dodecane</topic><topic>Environmental effects</topic><topic>Environmental Sciences</topic><topic>Ethanol</topic><topic>Flowering</topic><topic>genetic–environment interactions</topic><topic>Genotype & phenotype</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Global Changes</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Moisture content</topic><topic>Mountain regions</topic><topic>Phenylacetaldehyde</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Rainfall</topic><topic>Soil temperature</topic><topic>Soil water</topic><topic>Vapor pressure</topic><topic>Volatile compounds</topic><topic>Volatiles</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarzynski, Thuan</creatorcontrib><creatorcontrib>Bertrand, Benoît</creatorcontrib><creatorcontrib>Rigal, Clément</creatorcontrib><creatorcontrib>Marraccini, Pierre</creatorcontrib><creatorcontrib>Vaast, Philippe</creatorcontrib><creatorcontrib>Georget, Frédéric</creatorcontrib><creatorcontrib>Campa, Claudine</creatorcontrib><creatorcontrib>Abdallah, Cécile</creatorcontrib><creatorcontrib>Nguyen, Chang Thi Quynh</creatorcontrib><creatorcontrib>Nguyen, Hung Phi</creatorcontrib><creatorcontrib>Nguyen, Hai Thi Thanh</creatorcontrib><creatorcontrib>Ngoc, Quyen Luu</creatorcontrib><creatorcontrib>Ngan, Giang Khong</creatorcontrib><creatorcontrib>Viet, Thang Vu</creatorcontrib><creatorcontrib>Navarini, Luciano</creatorcontrib><creatorcontrib>Lonzarich, Valentina</creatorcontrib><creatorcontrib>Bossolasco, Laurent</creatorcontrib><creatorcontrib>Etienne, Hervé</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarzynski, Thuan</au><au>Bertrand, Benoît</au><au>Rigal, Clément</au><au>Marraccini, Pierre</au><au>Vaast, Philippe</au><au>Georget, Frédéric</au><au>Campa, Claudine</au><au>Abdallah, Cécile</au><au>Nguyen, Chang Thi Quynh</au><au>Nguyen, Hung Phi</au><au>Nguyen, Hai Thi Thanh</au><au>Ngoc, Quyen Luu</au><au>Ngan, Giang Khong</au><au>Viet, Thang Vu</au><au>Navarini, Luciano</au><au>Lonzarich, Valentina</au><au>Bossolasco, Laurent</au><au>Etienne, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2023-07</date><risdate>2023</risdate><volume>103</volume><issue>9</issue><spage>4692</spage><epage>4703</epage><pages>4692-4703</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed.
RESULTS
We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype‐environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3‐butanediol, 2‐methyl‐2‐buten‐1‐ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change.
CONCLUSION
This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>36905183</pmid><doi>10.1002/jsfa.12544</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1106-5363</orcidid><orcidid>https://orcid.org/0000-0002-6208-9982</orcidid><orcidid>https://orcid.org/0000-0001-7637-6811</orcidid><orcidid>https://orcid.org/0000-0002-6210-1101</orcidid><orcidid>https://orcid.org/0000-0002-2971-3210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2023-07, Vol.103 (9), p.4692-4703 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04034559v3 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Agricultural sciences Agronomy bean chemical content Beans Benzaldehyde Benzene Butanediol Chemical composition Chemical compounds Climate change Climate effects Climatic conditions Coffea arabica Coffee Dodecane Environmental effects Environmental Sciences Ethanol Flowering genetic–environment interactions Genotype & phenotype Genotype-environment interactions Genotypes Global Changes Life Sciences Lipids Moisture content Mountain regions Phenylacetaldehyde Physical characteristics Physical properties Rainfall Soil temperature Soil water Vapor pressure Volatile compounds Volatiles Water content |
title | Genetic‐environment interactions and climatic variables effect on bean physical characteristics and chemical composition of Coffea arabica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%E2%80%90environment%20interactions%20and%20climatic%20variables%20effect%20on%20bean%20physical%20characteristics%20and%20chemical%20composition%20of%20Coffea%20arabica&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Sarzynski,%20Thuan&rft.date=2023-07&rft.volume=103&rft.issue=9&rft.spage=4692&rft.epage=4703&rft.pages=4692-4703&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.12544&rft_dat=%3Cproquest_hal_p%3E2822202439%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822202439&rft_id=info:pmid/36905183&rfr_iscdi=true |