Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity

Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell host & microbe 2013-12, Vol.14 (6), p.619-630
Hauptverfasser: Wagner, Stephan, Stuttmann, Johannes, Rietz, Steffen, Guerois, Raphael, Brunstein, Elena, Bautor, Jaqueline, Niefind, Karsten, Parker, Jane E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 630
container_issue 6
container_start_page 619
container_title Cell host & microbe
container_volume 14
creator Wagner, Stephan
Stuttmann, Johannes
Rietz, Steffen
Guerois, Raphael
Brunstein, Elena
Bautor, Jaqueline
Niefind, Karsten
Parker, Jane E.
description Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity. [Display omitted] •Distinct EDS1 family member clades are maintained in plant evolution•EDS1 has lipase features, but catalytic activity is dispensable for immune function•EDS1 signals in immunity as exclusive heterodimers with SAG101 or PAD4•Unique surface features are created by EDS1-SAG101 heterodimerization
doi_str_mv 10.1016/j.chom.2013.11.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04029669v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312813004071</els_id><sourcerecordid>1477560706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6b888e1034440d1ce00890f75d4964334f20dd2c97d4bb4efd6ec530da3935643</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqXwBzggH-Gwy3jt9e5KXNI0bSJFolLgbHnt2cbRfgTbG5p_z6Zpe-Q01uiZRzN-CfnMIGXA5PddarZDl2bAeMpYCiDfkEtWcZFIkNXbpzdLOMvKC_IhhB1AnkPB3pOLTHDOhIRLEjbRjyaOXrf0WgcXaDN4unEPvW5d_0DrI108mnYM7oB0cbNhdIkR_dChd4bOh27f4iMG-tfFLd3M7qbF6CS4n90I6np63-o-0lXf64h01XVj7-LxI3nX6Dbgp-d6RX7fLn7Nl8n6591qPlsnRnARE1mXZYkMuBACLDMIUFbQFLkVlZwOEE0G1mamKqyoa4GNlWhyDlbziucTcUW-nb1b3aq9d532RzVop5aztTr1QEBWSVkd2MR-PbN7P_wZMUTVuWCwnfbHYQyKiaLIJRQgJzQ7o8YPIXhsXt0M1CkYtVOnYNQpGMWYgqehL8_-se7Qvo68JDEBP84ATj9ycOhVMA57g9Z5NFHZwf3P_w9lmJw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477560706</pqid></control><display><type>article</type><title>Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wagner, Stephan ; Stuttmann, Johannes ; Rietz, Steffen ; Guerois, Raphael ; Brunstein, Elena ; Bautor, Jaqueline ; Niefind, Karsten ; Parker, Jane E.</creator><creatorcontrib>Wagner, Stephan ; Stuttmann, Johannes ; Rietz, Steffen ; Guerois, Raphael ; Brunstein, Elena ; Bautor, Jaqueline ; Niefind, Karsten ; Parker, Jane E.</creatorcontrib><description>Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity. [Display omitted] •Distinct EDS1 family member clades are maintained in plant evolution•EDS1 has lipase features, but catalytic activity is dispensable for immune function•EDS1 signals in immunity as exclusive heterodimers with SAG101 or PAD4•Unique surface features are created by EDS1-SAG101 heterodimerization</description><identifier>ISSN: 1931-3128</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2013.11.006</identifier><identifier>PMID: 24331460</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis - immunology ; Arabidopsis - physiology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - genetics ; Carboxylic Ester Hydrolases - metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Genetics ; Immunity, Innate ; Life Sciences ; Models, Molecular ; Plants genetics ; Protein Conformation ; Protein Multimerization ; Signal Transduction</subject><ispartof>Cell host &amp; microbe, 2013-12, Vol.14 (6), p.619-630</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6b888e1034440d1ce00890f75d4964334f20dd2c97d4bb4efd6ec530da3935643</citedby><cites>FETCH-LOGICAL-c434t-6b888e1034440d1ce00890f75d4964334f20dd2c97d4bb4efd6ec530da3935643</cites><orcidid>0000-0002-6207-094X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1931312813004071$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24331460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-04029669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Stephan</creatorcontrib><creatorcontrib>Stuttmann, Johannes</creatorcontrib><creatorcontrib>Rietz, Steffen</creatorcontrib><creatorcontrib>Guerois, Raphael</creatorcontrib><creatorcontrib>Brunstein, Elena</creatorcontrib><creatorcontrib>Bautor, Jaqueline</creatorcontrib><creatorcontrib>Niefind, Karsten</creatorcontrib><creatorcontrib>Parker, Jane E.</creatorcontrib><title>Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity</title><title>Cell host &amp; microbe</title><addtitle>Cell Host Microbe</addtitle><description>Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity. [Display omitted] •Distinct EDS1 family member clades are maintained in plant evolution•EDS1 has lipase features, but catalytic activity is dispensable for immune function•EDS1 signals in immunity as exclusive heterodimers with SAG101 or PAD4•Unique surface features are created by EDS1-SAG101 heterodimerization</description><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - genetics</subject><subject>Carboxylic Ester Hydrolases - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genetics</subject><subject>Immunity, Innate</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Plants genetics</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Signal Transduction</subject><issn>1931-3128</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhi0EoqXwBzggH-Gwy3jt9e5KXNI0bSJFolLgbHnt2cbRfgTbG5p_z6Zpe-Q01uiZRzN-CfnMIGXA5PddarZDl2bAeMpYCiDfkEtWcZFIkNXbpzdLOMvKC_IhhB1AnkPB3pOLTHDOhIRLEjbRjyaOXrf0WgcXaDN4unEPvW5d_0DrI108mnYM7oB0cbNhdIkR_dChd4bOh27f4iMG-tfFLd3M7qbF6CS4n90I6np63-o-0lXf64h01XVj7-LxI3nX6Dbgp-d6RX7fLn7Nl8n6591qPlsnRnARE1mXZYkMuBACLDMIUFbQFLkVlZwOEE0G1mamKqyoa4GNlWhyDlbziucTcUW-nb1b3aq9d532RzVop5aztTr1QEBWSVkd2MR-PbN7P_wZMUTVuWCwnfbHYQyKiaLIJRQgJzQ7o8YPIXhsXt0M1CkYtVOnYNQpGMWYgqehL8_-se7Qvo68JDEBP84ATj9ycOhVMA57g9Z5NFHZwf3P_w9lmJw0</recordid><startdate>20131211</startdate><enddate>20131211</enddate><creator>Wagner, Stephan</creator><creator>Stuttmann, Johannes</creator><creator>Rietz, Steffen</creator><creator>Guerois, Raphael</creator><creator>Brunstein, Elena</creator><creator>Bautor, Jaqueline</creator><creator>Niefind, Karsten</creator><creator>Parker, Jane E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6207-094X</orcidid></search><sort><creationdate>20131211</creationdate><title>Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity</title><author>Wagner, Stephan ; Stuttmann, Johannes ; Rietz, Steffen ; Guerois, Raphael ; Brunstein, Elena ; Bautor, Jaqueline ; Niefind, Karsten ; Parker, Jane E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6b888e1034440d1ce00890f75d4964334f20dd2c97d4bb4efd6ec530da3935643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - genetics</topic><topic>Carboxylic Ester Hydrolases - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genetics</topic><topic>Immunity, Innate</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Plants genetics</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Stephan</creatorcontrib><creatorcontrib>Stuttmann, Johannes</creatorcontrib><creatorcontrib>Rietz, Steffen</creatorcontrib><creatorcontrib>Guerois, Raphael</creatorcontrib><creatorcontrib>Brunstein, Elena</creatorcontrib><creatorcontrib>Bautor, Jaqueline</creatorcontrib><creatorcontrib>Niefind, Karsten</creatorcontrib><creatorcontrib>Parker, Jane E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cell host &amp; microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Stephan</au><au>Stuttmann, Johannes</au><au>Rietz, Steffen</au><au>Guerois, Raphael</au><au>Brunstein, Elena</au><au>Bautor, Jaqueline</au><au>Niefind, Karsten</au><au>Parker, Jane E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity</atitle><jtitle>Cell host &amp; microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2013-12-11</date><risdate>2013</risdate><volume>14</volume><issue>6</issue><spage>619</spage><epage>630</epage><pages>619-630</pages><issn>1931-3128</issn><eissn>1934-6069</eissn><abstract>Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal α/β hydrolase and C-terminal α-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of α/β hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity. [Display omitted] •Distinct EDS1 family member clades are maintained in plant evolution•EDS1 has lipase features, but catalytic activity is dispensable for immune function•EDS1 signals in immunity as exclusive heterodimers with SAG101 or PAD4•Unique surface features are created by EDS1-SAG101 heterodimerization</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24331460</pmid><doi>10.1016/j.chom.2013.11.006</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6207-094X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3128
ispartof Cell host & microbe, 2013-12, Vol.14 (6), p.619-630
issn 1931-3128
1934-6069
language eng
recordid cdi_hal_primary_oai_HAL_hal_04029669v1
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis - immunology
Arabidopsis - physiology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - genetics
Carboxylic Ester Hydrolases - metabolism
Crystallography, X-Ray
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Genetics
Immunity, Innate
Life Sciences
Models, Molecular
Plants genetics
Protein Conformation
Protein Multimerization
Signal Transduction
title Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20Signaling%20by%20Exclusive%20EDS1%20Heteromeric%20Complexes%20with%20SAG101%20or%20PAD4%20in%20Plant%20Innate%20Immunity&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Wagner,%20Stephan&rft.date=2013-12-11&rft.volume=14&rft.issue=6&rft.spage=619&rft.epage=630&rft.pages=619-630&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2013.11.006&rft_dat=%3Cproquest_hal_p%3E1477560706%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477560706&rft_id=info:pmid/24331460&rft_els_id=S1931312813004071&rfr_iscdi=true