Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites
CM chondrites form the largest group of hydrated meteorites and span a wide range of alteration states, with the Paris meteorite being the least altered CM described to date. Ca-Carbonates are powerful proxies for the alteration conditions of CMs because they are direct snapshots of the chemical and...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2017-09, Vol.213, p.271-290 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CM chondrites form the largest group of hydrated meteorites and span a wide range of alteration states, with the Paris meteorite being the least altered CM described to date. Ca-Carbonates are powerful proxies for the alteration conditions of CMs because they are direct snapshots of the chemical and isotopic compositions of the parent fluids. Here, we report a petrographic and a C isotope and O isotope survey of Ca-carbonates in Paris in order to better characterize the earliest stages of aqueous alteration. Petrographic observations show that Paris contains two distinct populations of Ca-carbonates: Type 1a Ca-carbonates, which are surrounded by rims of tochilinite/cronstedtite intergrowths (TCIs), and new Type 0 Ca-carbonates, which do not exhibit the TCI rims. The TCI rims of Type 1a Ca-carbonates commonly outline euhedral crystal faces, demonstrating that these Ca-carbonates were (i) partially or totally pseudomorphosed by TCI and (ii) precipitated at the earliest stages of aqueous alteration, before Type 0 Ca-carbonates. Isotopic measurements show that Paris' Ca-carbonates have δ13C values that range from 19 to 80‰ (PDB), δ18O values that range from 29 to 41%, and δ17O values that range from 13 to 24‰ (SMOW). According to the δ13C–δ18O values of Paris' Ca-carbonates, we developed a new alteration model that involves (i) the equilibration of a primordial 17,18O-rich water (PW) with 16O-rich anhydrous silicates and (ii) varying contribution of 12C- and 13C-rich soluble organic matter (SOMs). It also suggests that many parameters control the C and O isotopic composition of Ca-carbonates, the principles being the degree of isotopic equilibration between the PW and the anhydrous silicates, the respective contribution of 12C and 13C-rich SOMs as well as the thermal evolution of CM parent bodies. Consequently, we suggest that CM Ca-carbonates could record both positive and negative δ13C–δ18O relationships, but a systematic correspondence is probably absent in CM chondrites due to the large number of factors involved in generating the isotopic characteristics of Ca-carbonates. From recent reports of the C-isotopic compositions of SOM in CM chondrites, we propose that water-soluble organic compounds were the most probable source of 13C enrichment in the majority of CM carbonates. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/j.gca.2017.06.049 |