Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought

Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2022-03, Vol.174 (2), p.e13673-n/a
Hauptverfasser: Morin, Amélie, Kadi, Fadia, Porcheron, Benoit, Vriet, Cécile, Maurousset, Laurence, Lemoine, Rémi, Pourtau, Nathalie, Doidy, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e13673
container_title Physiologia plantarum
container_volume 174
creator Morin, Amélie
Kadi, Fadia
Porcheron, Benoit
Vriet, Cécile
Maurousset, Laurence
Lemoine, Rémi
Pourtau, Nathalie
Doidy, Joan
description Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.
doi_str_mv 10.1111/ppl.13673
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04027277v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655443628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</originalsourceid><addsrcrecordid>eNp1kcFuFCEYx4nRtGvbgy9gSLxo4rQwwDBzbBrbmmziHuyZMPCxZTMzjDCzTW8-gjffzyeRdesaTSQhfJAfP8j3R-gVJec0j4tx7M4pqyR7hhaUNU3BiODP0YIQRouGUXmMXqa0IYRWFS2P0DETjMhalAv0_QaG0MOPr98evAWc5zB5542efBhwcNgPW4iTTpByia91qw1oeI9dMHPywxpnbIp6SCb6cXdJdzjCeu4OhpVPc49T3m_z-rcvAVic5nYDZsrVFLCNYV7fT6fohdNdgrOn9QTdXX_4fHVbLD_dfLy6XBaG1ZIVVSWplULY0llhJaO6bZwtGyllbXWb-yAqy50uGbUtB06t0c5YwaVrneGWnaB3e--97tQYfa_jowraq9vLpdqdEU5KWUq5pZl9u2fHGL7MkCbV-2Sg6_QAYU6qrDgVpBasyuibf9BNmGPuzY4SgnNWlfWfx00MKUVwhx9QonbJqpys-pVsZl8_Gee2B3sgf0eZgYs98OA7ePy_Sa1Wy73yJ8X4sMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655443628</pqid></control><display><type>article</type><title>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Morin, Amélie ; Kadi, Fadia ; Porcheron, Benoit ; Vriet, Cécile ; Maurousset, Laurence ; Lemoine, Rémi ; Pourtau, Nathalie ; Doidy, Joan</creator><creatorcontrib>Morin, Amélie ; Kadi, Fadia ; Porcheron, Benoit ; Vriet, Cécile ; Maurousset, Laurence ; Lemoine, Rémi ; Pourtau, Nathalie ; Doidy, Joan</creatorcontrib><description>Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13673</identifier><identifier>PMID: 35307852</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agronomic crops ; Alfalfa ; beta-Fructofuranosidase - genetics ; beta-Fructofuranosidase - metabolism ; Carbon ; Carbon - metabolism ; Cell walls ; Developmental stages ; Drought ; Droughts ; Embryogenesis ; Embryonic growth stage ; Energy metabolism ; Fabaceae ; Fabaceae - genetics ; Fabaceae - metabolism ; Gene Expression Regulation, Plant - genetics ; Gene families ; Gene regulation ; Genomes ; Hexose ; Invertase ; Legumes ; Life Sciences ; Metabolism ; Metabolites ; Monosaccharides ; Osmosis ; Osmotic pressure ; Phylogeny ; Pisum sativum ; Pisum sativum - genetics ; Pisum sativum - metabolism ; Seeds ; Seeds - genetics ; Seeds - metabolism ; Sucrose ; Sucrose - metabolism ; Transcription ; Unloading ; Water deficit ; Water stress</subject><ispartof>Physiologia plantarum, 2022-03, Vol.174 (2), p.e13673-n/a</ispartof><rights>2022 Scandinavian Plant Physiology Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</citedby><cites>FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</cites><orcidid>0000-0001-6625-268X ; 0000-0003-3318-8778 ; 0000-0003-3966-3218 ; 0000-0003-1200-4968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13673$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13673$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35307852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04027277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Amélie</creatorcontrib><creatorcontrib>Kadi, Fadia</creatorcontrib><creatorcontrib>Porcheron, Benoit</creatorcontrib><creatorcontrib>Vriet, Cécile</creatorcontrib><creatorcontrib>Maurousset, Laurence</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Pourtau, Nathalie</creatorcontrib><creatorcontrib>Doidy, Joan</creatorcontrib><title>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.</description><subject>Agronomic crops</subject><subject>Alfalfa</subject><subject>beta-Fructofuranosidase - genetics</subject><subject>beta-Fructofuranosidase - metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cell walls</subject><subject>Developmental stages</subject><subject>Drought</subject><subject>Droughts</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Energy metabolism</subject><subject>Fabaceae</subject><subject>Fabaceae - genetics</subject><subject>Fabaceae - metabolism</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene families</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Hexose</subject><subject>Invertase</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Monosaccharides</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Phylogeny</subject><subject>Pisum sativum</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - metabolism</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - metabolism</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><subject>Transcription</subject><subject>Unloading</subject><subject>Water deficit</subject><subject>Water stress</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFuFCEYx4nRtGvbgy9gSLxo4rQwwDBzbBrbmmziHuyZMPCxZTMzjDCzTW8-gjffzyeRdesaTSQhfJAfP8j3R-gVJec0j4tx7M4pqyR7hhaUNU3BiODP0YIQRouGUXmMXqa0IYRWFS2P0DETjMhalAv0_QaG0MOPr98evAWc5zB5542efBhwcNgPW4iTTpByia91qw1oeI9dMHPywxpnbIp6SCb6cXdJdzjCeu4OhpVPc49T3m_z-rcvAVic5nYDZsrVFLCNYV7fT6fohdNdgrOn9QTdXX_4fHVbLD_dfLy6XBaG1ZIVVSWplULY0llhJaO6bZwtGyllbXWb-yAqy50uGbUtB06t0c5YwaVrneGWnaB3e--97tQYfa_jowraq9vLpdqdEU5KWUq5pZl9u2fHGL7MkCbV-2Sg6_QAYU6qrDgVpBasyuibf9BNmGPuzY4SgnNWlfWfx00MKUVwhx9QonbJqpys-pVsZl8_Gee2B3sgf0eZgYs98OA7ePy_Sa1Wy73yJ8X4sMc</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Morin, Amélie</creator><creator>Kadi, Fadia</creator><creator>Porcheron, Benoit</creator><creator>Vriet, Cécile</creator><creator>Maurousset, Laurence</creator><creator>Lemoine, Rémi</creator><creator>Pourtau, Nathalie</creator><creator>Doidy, Joan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6625-268X</orcidid><orcidid>https://orcid.org/0000-0003-3318-8778</orcidid><orcidid>https://orcid.org/0000-0003-3966-3218</orcidid><orcidid>https://orcid.org/0000-0003-1200-4968</orcidid></search><sort><creationdate>202203</creationdate><title>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</title><author>Morin, Amélie ; Kadi, Fadia ; Porcheron, Benoit ; Vriet, Cécile ; Maurousset, Laurence ; Lemoine, Rémi ; Pourtau, Nathalie ; Doidy, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agronomic crops</topic><topic>Alfalfa</topic><topic>beta-Fructofuranosidase - genetics</topic><topic>beta-Fructofuranosidase - metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cell walls</topic><topic>Developmental stages</topic><topic>Drought</topic><topic>Droughts</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Energy metabolism</topic><topic>Fabaceae</topic><topic>Fabaceae - genetics</topic><topic>Fabaceae - metabolism</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene families</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Hexose</topic><topic>Invertase</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Monosaccharides</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Phylogeny</topic><topic>Pisum sativum</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - metabolism</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - metabolism</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><topic>Transcription</topic><topic>Unloading</topic><topic>Water deficit</topic><topic>Water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Amélie</creatorcontrib><creatorcontrib>Kadi, Fadia</creatorcontrib><creatorcontrib>Porcheron, Benoit</creatorcontrib><creatorcontrib>Vriet, Cécile</creatorcontrib><creatorcontrib>Maurousset, Laurence</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Pourtau, Nathalie</creatorcontrib><creatorcontrib>Doidy, Joan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Amélie</au><au>Kadi, Fadia</au><au>Porcheron, Benoit</au><au>Vriet, Cécile</au><au>Maurousset, Laurence</au><au>Lemoine, Rémi</au><au>Pourtau, Nathalie</au><au>Doidy, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2022-03</date><risdate>2022</risdate><volume>174</volume><issue>2</issue><spage>e13673</spage><epage>n/a</epage><pages>e13673-n/a</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>35307852</pmid><doi>10.1111/ppl.13673</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6625-268X</orcidid><orcidid>https://orcid.org/0000-0003-3318-8778</orcidid><orcidid>https://orcid.org/0000-0003-3966-3218</orcidid><orcidid>https://orcid.org/0000-0003-1200-4968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2022-03, Vol.174 (2), p.e13673-n/a
issn 0031-9317
1399-3054
language eng
recordid cdi_hal_primary_oai_HAL_hal_04027277v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Agronomic crops
Alfalfa
beta-Fructofuranosidase - genetics
beta-Fructofuranosidase - metabolism
Carbon
Carbon - metabolism
Cell walls
Developmental stages
Drought
Droughts
Embryogenesis
Embryonic growth stage
Energy metabolism
Fabaceae
Fabaceae - genetics
Fabaceae - metabolism
Gene Expression Regulation, Plant - genetics
Gene families
Gene regulation
Genomes
Hexose
Invertase
Legumes
Life Sciences
Metabolism
Metabolites
Monosaccharides
Osmosis
Osmotic pressure
Phylogeny
Pisum sativum
Pisum sativum - genetics
Pisum sativum - metabolism
Seeds
Seeds - genetics
Seeds - metabolism
Sucrose
Sucrose - metabolism
Transcription
Unloading
Water deficit
Water stress
title Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90wide%20identification%20of%20invertases%20in%20Fabaceae,%20focusing%20on%20transcriptional%20regulation%20of%20Pisum%20sativum%20invertases%20in%20seed%20subjected%20to%20drought&rft.jtitle=Physiologia%20plantarum&rft.au=Morin,%20Am%C3%A9lie&rft.date=2022-03&rft.volume=174&rft.issue=2&rft.spage=e13673&rft.epage=n/a&rft.pages=e13673-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13673&rft_dat=%3Cproquest_hal_p%3E2655443628%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655443628&rft_id=info:pmid/35307852&rfr_iscdi=true