Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought
Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene f...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2022-03, Vol.174 (2), p.e13673-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e13673 |
container_title | Physiologia plantarum |
container_volume | 174 |
creator | Morin, Amélie Kadi, Fadia Porcheron, Benoit Vriet, Cécile Maurousset, Laurence Lemoine, Rémi Pourtau, Nathalie Doidy, Joan |
description | Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment. |
doi_str_mv | 10.1111/ppl.13673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04027277v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655443628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</originalsourceid><addsrcrecordid>eNp1kcFuFCEYx4nRtGvbgy9gSLxo4rQwwDBzbBrbmmziHuyZMPCxZTMzjDCzTW8-gjffzyeRdesaTSQhfJAfP8j3R-gVJec0j4tx7M4pqyR7hhaUNU3BiODP0YIQRouGUXmMXqa0IYRWFS2P0DETjMhalAv0_QaG0MOPr98evAWc5zB5542efBhwcNgPW4iTTpByia91qw1oeI9dMHPywxpnbIp6SCb6cXdJdzjCeu4OhpVPc49T3m_z-rcvAVic5nYDZsrVFLCNYV7fT6fohdNdgrOn9QTdXX_4fHVbLD_dfLy6XBaG1ZIVVSWplULY0llhJaO6bZwtGyllbXWb-yAqy50uGbUtB06t0c5YwaVrneGWnaB3e--97tQYfa_jowraq9vLpdqdEU5KWUq5pZl9u2fHGL7MkCbV-2Sg6_QAYU6qrDgVpBasyuibf9BNmGPuzY4SgnNWlfWfx00MKUVwhx9QonbJqpys-pVsZl8_Gee2B3sgf0eZgYs98OA7ePy_Sa1Wy73yJ8X4sMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655443628</pqid></control><display><type>article</type><title>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Morin, Amélie ; Kadi, Fadia ; Porcheron, Benoit ; Vriet, Cécile ; Maurousset, Laurence ; Lemoine, Rémi ; Pourtau, Nathalie ; Doidy, Joan</creator><creatorcontrib>Morin, Amélie ; Kadi, Fadia ; Porcheron, Benoit ; Vriet, Cécile ; Maurousset, Laurence ; Lemoine, Rémi ; Pourtau, Nathalie ; Doidy, Joan</creatorcontrib><description>Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13673</identifier><identifier>PMID: 35307852</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agronomic crops ; Alfalfa ; beta-Fructofuranosidase - genetics ; beta-Fructofuranosidase - metabolism ; Carbon ; Carbon - metabolism ; Cell walls ; Developmental stages ; Drought ; Droughts ; Embryogenesis ; Embryonic growth stage ; Energy metabolism ; Fabaceae ; Fabaceae - genetics ; Fabaceae - metabolism ; Gene Expression Regulation, Plant - genetics ; Gene families ; Gene regulation ; Genomes ; Hexose ; Invertase ; Legumes ; Life Sciences ; Metabolism ; Metabolites ; Monosaccharides ; Osmosis ; Osmotic pressure ; Phylogeny ; Pisum sativum ; Pisum sativum - genetics ; Pisum sativum - metabolism ; Seeds ; Seeds - genetics ; Seeds - metabolism ; Sucrose ; Sucrose - metabolism ; Transcription ; Unloading ; Water deficit ; Water stress</subject><ispartof>Physiologia plantarum, 2022-03, Vol.174 (2), p.e13673-n/a</ispartof><rights>2022 Scandinavian Plant Physiology Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</citedby><cites>FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</cites><orcidid>0000-0001-6625-268X ; 0000-0003-3318-8778 ; 0000-0003-3966-3218 ; 0000-0003-1200-4968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13673$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13673$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35307852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04027277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Amélie</creatorcontrib><creatorcontrib>Kadi, Fadia</creatorcontrib><creatorcontrib>Porcheron, Benoit</creatorcontrib><creatorcontrib>Vriet, Cécile</creatorcontrib><creatorcontrib>Maurousset, Laurence</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Pourtau, Nathalie</creatorcontrib><creatorcontrib>Doidy, Joan</creatorcontrib><title>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.</description><subject>Agronomic crops</subject><subject>Alfalfa</subject><subject>beta-Fructofuranosidase - genetics</subject><subject>beta-Fructofuranosidase - metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cell walls</subject><subject>Developmental stages</subject><subject>Drought</subject><subject>Droughts</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Energy metabolism</subject><subject>Fabaceae</subject><subject>Fabaceae - genetics</subject><subject>Fabaceae - metabolism</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene families</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Hexose</subject><subject>Invertase</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Monosaccharides</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Phylogeny</subject><subject>Pisum sativum</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - metabolism</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - metabolism</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><subject>Transcription</subject><subject>Unloading</subject><subject>Water deficit</subject><subject>Water stress</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFuFCEYx4nRtGvbgy9gSLxo4rQwwDBzbBrbmmziHuyZMPCxZTMzjDCzTW8-gjffzyeRdesaTSQhfJAfP8j3R-gVJec0j4tx7M4pqyR7hhaUNU3BiODP0YIQRouGUXmMXqa0IYRWFS2P0DETjMhalAv0_QaG0MOPr98evAWc5zB5542efBhwcNgPW4iTTpByia91qw1oeI9dMHPywxpnbIp6SCb6cXdJdzjCeu4OhpVPc49T3m_z-rcvAVic5nYDZsrVFLCNYV7fT6fohdNdgrOn9QTdXX_4fHVbLD_dfLy6XBaG1ZIVVSWplULY0llhJaO6bZwtGyllbXWb-yAqy50uGbUtB06t0c5YwaVrneGWnaB3e--97tQYfa_jowraq9vLpdqdEU5KWUq5pZl9u2fHGL7MkCbV-2Sg6_QAYU6qrDgVpBasyuibf9BNmGPuzY4SgnNWlfWfx00MKUVwhx9QonbJqpys-pVsZl8_Gee2B3sgf0eZgYs98OA7ePy_Sa1Wy73yJ8X4sMc</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Morin, Amélie</creator><creator>Kadi, Fadia</creator><creator>Porcheron, Benoit</creator><creator>Vriet, Cécile</creator><creator>Maurousset, Laurence</creator><creator>Lemoine, Rémi</creator><creator>Pourtau, Nathalie</creator><creator>Doidy, Joan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6625-268X</orcidid><orcidid>https://orcid.org/0000-0003-3318-8778</orcidid><orcidid>https://orcid.org/0000-0003-3966-3218</orcidid><orcidid>https://orcid.org/0000-0003-1200-4968</orcidid></search><sort><creationdate>202203</creationdate><title>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</title><author>Morin, Amélie ; Kadi, Fadia ; Porcheron, Benoit ; Vriet, Cécile ; Maurousset, Laurence ; Lemoine, Rémi ; Pourtau, Nathalie ; Doidy, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-6671d755d2fd5d731ab9fd297778dab30556d4fa231db4e41dcafcd547fbfc4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agronomic crops</topic><topic>Alfalfa</topic><topic>beta-Fructofuranosidase - genetics</topic><topic>beta-Fructofuranosidase - metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cell walls</topic><topic>Developmental stages</topic><topic>Drought</topic><topic>Droughts</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Energy metabolism</topic><topic>Fabaceae</topic><topic>Fabaceae - genetics</topic><topic>Fabaceae - metabolism</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene families</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Hexose</topic><topic>Invertase</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Monosaccharides</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Phylogeny</topic><topic>Pisum sativum</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - metabolism</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - metabolism</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><topic>Transcription</topic><topic>Unloading</topic><topic>Water deficit</topic><topic>Water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Amélie</creatorcontrib><creatorcontrib>Kadi, Fadia</creatorcontrib><creatorcontrib>Porcheron, Benoit</creatorcontrib><creatorcontrib>Vriet, Cécile</creatorcontrib><creatorcontrib>Maurousset, Laurence</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Pourtau, Nathalie</creatorcontrib><creatorcontrib>Doidy, Joan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Amélie</au><au>Kadi, Fadia</au><au>Porcheron, Benoit</au><au>Vriet, Cécile</au><au>Maurousset, Laurence</au><au>Lemoine, Rémi</au><au>Pourtau, Nathalie</au><au>Doidy, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2022-03</date><risdate>2022</risdate><volume>174</volume><issue>2</issue><spage>e13673</spage><epage>n/a</epage><pages>e13673-n/a</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy‐rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed‐filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>35307852</pmid><doi>10.1111/ppl.13673</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6625-268X</orcidid><orcidid>https://orcid.org/0000-0003-3318-8778</orcidid><orcidid>https://orcid.org/0000-0003-3966-3218</orcidid><orcidid>https://orcid.org/0000-0003-1200-4968</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2022-03, Vol.174 (2), p.e13673-n/a |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04027277v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Agronomic crops Alfalfa beta-Fructofuranosidase - genetics beta-Fructofuranosidase - metabolism Carbon Carbon - metabolism Cell walls Developmental stages Drought Droughts Embryogenesis Embryonic growth stage Energy metabolism Fabaceae Fabaceae - genetics Fabaceae - metabolism Gene Expression Regulation, Plant - genetics Gene families Gene regulation Genomes Hexose Invertase Legumes Life Sciences Metabolism Metabolites Monosaccharides Osmosis Osmotic pressure Phylogeny Pisum sativum Pisum sativum - genetics Pisum sativum - metabolism Seeds Seeds - genetics Seeds - metabolism Sucrose Sucrose - metabolism Transcription Unloading Water deficit Water stress |
title | Genome‐wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90wide%20identification%20of%20invertases%20in%20Fabaceae,%20focusing%20on%20transcriptional%20regulation%20of%20Pisum%20sativum%20invertases%20in%20seed%20subjected%20to%20drought&rft.jtitle=Physiologia%20plantarum&rft.au=Morin,%20Am%C3%A9lie&rft.date=2022-03&rft.volume=174&rft.issue=2&rft.spage=e13673&rft.epage=n/a&rft.pages=e13673-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13673&rft_dat=%3Cproquest_hal_p%3E2655443628%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655443628&rft_id=info:pmid/35307852&rfr_iscdi=true |