Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle
In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given dri...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-12, Vol.64 (12), p.9834-9843 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9843 |
---|---|
container_issue | 12 |
container_start_page | 9834 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Linh Dang Bernard, Nicolas Bracikowski, Nicolas Berthiau, Gerard |
description | In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule. |
doi_str_mv | 10.1109/TIE.2017.2726962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04018408v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7979628</ieee_id><sourcerecordid>1956422742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</originalsourceid><addsrcrecordid>eNo9kc1LI0EQxRtZYbPqfcFLw572MLH6u-coMW6EiIJfx6adVGfaHaezPRNd_eudIeKpinq_9yh4hPxkMGUMypPbi_mUAzNTbrguNd8jE6aUKcpS2m9kAtzYAkDq7-RH1z0BMKmYmpB0hl1ct_Rq08fn-O77mFr6Gvuanjfb__QB_V9sY7umKdBFXNfFzQZxRa8vby5pSJnOG6z6HCvf0HusY9UgnaW2iyvMo6uvkZ7l-DLus7dBPST7wTcdHn3OA3J3Pr-dLYrl1Z-L2emyqARXfYHIAKwK0nsRZOASjA6rR82sEBq0FpURhvtQSY1CrSBYrx4lVMYrZkvJxAH5vcutfeM2OT77_OaSj25xunTjDSQwK8G-jOyvHbvJ6d8Wu949pW1uh_ccK5WWnBvJBwp2VJVT12UMX7EM3FiBGypwYwXus4LBcryzRET8wk1pBtGKD_HngGk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956422742</pqid></control><display><type>article</type><title>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</title><source>IEEE Electronic Library (IEL)</source><creator>Linh Dang ; Bernard, Nicolas ; Bracikowski, Nicolas ; Berthiau, Gerard</creator><creatorcontrib>Linh Dang ; Bernard, Nicolas ; Bracikowski, Nicolas ; Berthiau, Gerard</creatorcontrib><description>In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2726962</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Automotive parts ; Design methodology ; Design optimization ; Dimensional analysis ; driving cycle ; electric vehicle ; Engineering Sciences ; Finite element method ; Flux ; flux weakening ; High speed ; high-speed permanent magnet synchronous machines (PMSM) ; Iron ; Magnetic hysteresis ; Mathematical models ; Optimal control ; Power converters ; reluctance network (RN) ; Stators ; Synchronous machines ; Torque</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-12, Vol.64 (12), p.9834-9843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</citedby><cites>FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</cites><orcidid>0000-0002-3892-5469 ; 0000-0002-9258-4132 ; 0000-0001-6956-9236 ; 0000-0003-3301-6896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7979628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7979628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04018408$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Linh Dang</creatorcontrib><creatorcontrib>Bernard, Nicolas</creatorcontrib><creatorcontrib>Bracikowski, Nicolas</creatorcontrib><creatorcontrib>Berthiau, Gerard</creatorcontrib><title>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.</description><subject>Analytical models</subject><subject>Automotive parts</subject><subject>Design methodology</subject><subject>Design optimization</subject><subject>Dimensional analysis</subject><subject>driving cycle</subject><subject>electric vehicle</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Flux</subject><subject>flux weakening</subject><subject>High speed</subject><subject>high-speed permanent magnet synchronous machines (PMSM)</subject><subject>Iron</subject><subject>Magnetic hysteresis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Power converters</subject><subject>reluctance network (RN)</subject><subject>Stators</subject><subject>Synchronous machines</subject><subject>Torque</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1LI0EQxRtZYbPqfcFLw572MLH6u-coMW6EiIJfx6adVGfaHaezPRNd_eudIeKpinq_9yh4hPxkMGUMypPbi_mUAzNTbrguNd8jE6aUKcpS2m9kAtzYAkDq7-RH1z0BMKmYmpB0hl1ct_Rq08fn-O77mFr6Gvuanjfb__QB_V9sY7umKdBFXNfFzQZxRa8vby5pSJnOG6z6HCvf0HusY9UgnaW2iyvMo6uvkZ7l-DLus7dBPST7wTcdHn3OA3J3Pr-dLYrl1Z-L2emyqARXfYHIAKwK0nsRZOASjA6rR82sEBq0FpURhvtQSY1CrSBYrx4lVMYrZkvJxAH5vcutfeM2OT77_OaSj25xunTjDSQwK8G-jOyvHbvJ6d8Wu949pW1uh_ccK5WWnBvJBwp2VJVT12UMX7EM3FiBGypwYwXus4LBcryzRET8wk1pBtGKD_HngGk</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Linh Dang</creator><creator>Bernard, Nicolas</creator><creator>Bracikowski, Nicolas</creator><creator>Berthiau, Gerard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3892-5469</orcidid><orcidid>https://orcid.org/0000-0002-9258-4132</orcidid><orcidid>https://orcid.org/0000-0001-6956-9236</orcidid><orcidid>https://orcid.org/0000-0003-3301-6896</orcidid></search><sort><creationdate>201712</creationdate><title>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</title><author>Linh Dang ; Bernard, Nicolas ; Bracikowski, Nicolas ; Berthiau, Gerard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Automotive parts</topic><topic>Design methodology</topic><topic>Design optimization</topic><topic>Dimensional analysis</topic><topic>driving cycle</topic><topic>electric vehicle</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Flux</topic><topic>flux weakening</topic><topic>High speed</topic><topic>high-speed permanent magnet synchronous machines (PMSM)</topic><topic>Iron</topic><topic>Magnetic hysteresis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Power converters</topic><topic>reluctance network (RN)</topic><topic>Stators</topic><topic>Synchronous machines</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linh Dang</creatorcontrib><creatorcontrib>Bernard, Nicolas</creatorcontrib><creatorcontrib>Bracikowski, Nicolas</creatorcontrib><creatorcontrib>Berthiau, Gerard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Linh Dang</au><au>Bernard, Nicolas</au><au>Bracikowski, Nicolas</au><au>Berthiau, Gerard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-12</date><risdate>2017</risdate><volume>64</volume><issue>12</issue><spage>9834</spage><epage>9843</epage><pages>9834-9843</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2726962</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3892-5469</orcidid><orcidid>https://orcid.org/0000-0002-9258-4132</orcidid><orcidid>https://orcid.org/0000-0001-6956-9236</orcidid><orcidid>https://orcid.org/0000-0003-3301-6896</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-12, Vol.64 (12), p.9834-9843 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04018408v1 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Automotive parts Design methodology Design optimization Dimensional analysis driving cycle electric vehicle Engineering Sciences Finite element method Flux flux weakening High speed high-speed permanent magnet synchronous machines (PMSM) Iron Magnetic hysteresis Mathematical models Optimal control Power converters reluctance network (RN) Stators Synchronous machines Torque |
title | Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20with%20Flux%20Weakening%20of%20High-Speed%20PMSM%20for%20Electrical%20Vehicle%20Considering%20the%20Driving%20Cycle&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Linh%20Dang&rft.date=2017-12&rft.volume=64&rft.issue=12&rft.spage=9834&rft.epage=9843&rft.pages=9834-9843&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2726962&rft_dat=%3Cproquest_RIE%3E1956422742%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956422742&rft_id=info:pmid/&rft_ieee_id=7979628&rfr_iscdi=true |