Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle

In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given dri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-12, Vol.64 (12), p.9834-9843
Hauptverfasser: Linh Dang, Bernard, Nicolas, Bracikowski, Nicolas, Berthiau, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9843
container_issue 12
container_start_page 9834
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Linh Dang
Bernard, Nicolas
Bracikowski, Nicolas
Berthiau, Gerard
description In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.
doi_str_mv 10.1109/TIE.2017.2726962
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04018408v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7979628</ieee_id><sourcerecordid>1956422742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</originalsourceid><addsrcrecordid>eNo9kc1LI0EQxRtZYbPqfcFLw572MLH6u-coMW6EiIJfx6adVGfaHaezPRNd_eudIeKpinq_9yh4hPxkMGUMypPbi_mUAzNTbrguNd8jE6aUKcpS2m9kAtzYAkDq7-RH1z0BMKmYmpB0hl1ct_Rq08fn-O77mFr6Gvuanjfb__QB_V9sY7umKdBFXNfFzQZxRa8vby5pSJnOG6z6HCvf0HusY9UgnaW2iyvMo6uvkZ7l-DLus7dBPST7wTcdHn3OA3J3Pr-dLYrl1Z-L2emyqARXfYHIAKwK0nsRZOASjA6rR82sEBq0FpURhvtQSY1CrSBYrx4lVMYrZkvJxAH5vcutfeM2OT77_OaSj25xunTjDSQwK8G-jOyvHbvJ6d8Wu949pW1uh_ccK5WWnBvJBwp2VJVT12UMX7EM3FiBGypwYwXus4LBcryzRET8wk1pBtGKD_HngGk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956422742</pqid></control><display><type>article</type><title>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</title><source>IEEE Electronic Library (IEL)</source><creator>Linh Dang ; Bernard, Nicolas ; Bracikowski, Nicolas ; Berthiau, Gerard</creator><creatorcontrib>Linh Dang ; Bernard, Nicolas ; Bracikowski, Nicolas ; Berthiau, Gerard</creatorcontrib><description>In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2726962</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Automotive parts ; Design methodology ; Design optimization ; Dimensional analysis ; driving cycle ; electric vehicle ; Engineering Sciences ; Finite element method ; Flux ; flux weakening ; High speed ; high-speed permanent magnet synchronous machines (PMSM) ; Iron ; Magnetic hysteresis ; Mathematical models ; Optimal control ; Power converters ; reluctance network (RN) ; Stators ; Synchronous machines ; Torque</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-12, Vol.64 (12), p.9834-9843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</citedby><cites>FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</cites><orcidid>0000-0002-3892-5469 ; 0000-0002-9258-4132 ; 0000-0001-6956-9236 ; 0000-0003-3301-6896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7979628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7979628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04018408$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Linh Dang</creatorcontrib><creatorcontrib>Bernard, Nicolas</creatorcontrib><creatorcontrib>Bracikowski, Nicolas</creatorcontrib><creatorcontrib>Berthiau, Gerard</creatorcontrib><title>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.</description><subject>Analytical models</subject><subject>Automotive parts</subject><subject>Design methodology</subject><subject>Design optimization</subject><subject>Dimensional analysis</subject><subject>driving cycle</subject><subject>electric vehicle</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Flux</subject><subject>flux weakening</subject><subject>High speed</subject><subject>high-speed permanent magnet synchronous machines (PMSM)</subject><subject>Iron</subject><subject>Magnetic hysteresis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Power converters</subject><subject>reluctance network (RN)</subject><subject>Stators</subject><subject>Synchronous machines</subject><subject>Torque</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1LI0EQxRtZYbPqfcFLw572MLH6u-coMW6EiIJfx6adVGfaHaezPRNd_eudIeKpinq_9yh4hPxkMGUMypPbi_mUAzNTbrguNd8jE6aUKcpS2m9kAtzYAkDq7-RH1z0BMKmYmpB0hl1ct_Rq08fn-O77mFr6Gvuanjfb__QB_V9sY7umKdBFXNfFzQZxRa8vby5pSJnOG6z6HCvf0HusY9UgnaW2iyvMo6uvkZ7l-DLus7dBPST7wTcdHn3OA3J3Pr-dLYrl1Z-L2emyqARXfYHIAKwK0nsRZOASjA6rR82sEBq0FpURhvtQSY1CrSBYrx4lVMYrZkvJxAH5vcutfeM2OT77_OaSj25xunTjDSQwK8G-jOyvHbvJ6d8Wu949pW1uh_ccK5WWnBvJBwp2VJVT12UMX7EM3FiBGypwYwXus4LBcryzRET8wk1pBtGKD_HngGk</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Linh Dang</creator><creator>Bernard, Nicolas</creator><creator>Bracikowski, Nicolas</creator><creator>Berthiau, Gerard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3892-5469</orcidid><orcidid>https://orcid.org/0000-0002-9258-4132</orcidid><orcidid>https://orcid.org/0000-0001-6956-9236</orcidid><orcidid>https://orcid.org/0000-0003-3301-6896</orcidid></search><sort><creationdate>201712</creationdate><title>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</title><author>Linh Dang ; Bernard, Nicolas ; Bracikowski, Nicolas ; Berthiau, Gerard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ee10085f4aa3f4f24076fdb6183360663c7372afc46e35d0f8a5b40c7a5189413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Automotive parts</topic><topic>Design methodology</topic><topic>Design optimization</topic><topic>Dimensional analysis</topic><topic>driving cycle</topic><topic>electric vehicle</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Flux</topic><topic>flux weakening</topic><topic>High speed</topic><topic>high-speed permanent magnet synchronous machines (PMSM)</topic><topic>Iron</topic><topic>Magnetic hysteresis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Power converters</topic><topic>reluctance network (RN)</topic><topic>Stators</topic><topic>Synchronous machines</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linh Dang</creatorcontrib><creatorcontrib>Bernard, Nicolas</creatorcontrib><creatorcontrib>Bracikowski, Nicolas</creatorcontrib><creatorcontrib>Berthiau, Gerard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Linh Dang</au><au>Bernard, Nicolas</au><au>Bracikowski, Nicolas</au><au>Berthiau, Gerard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-12</date><risdate>2017</risdate><volume>64</volume><issue>12</issue><spage>9834</spage><epage>9843</epage><pages>9834-9843</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, the design optimization of a nonsalient high-speed permanent magnet synchronous machine (PMSM) for electric vehicle applications is presented. It will be shown how, with a new approach, it is possible to find a deterministic solution to solve the sizing of the machine from a given driving cycle. The optimal geometry and the optimal control strategy over the cycle minimizing both the energy losses and the volume of the machine will be calculated. At first, the one-dimensional analytical model used is presented and validated for the most significant point of the driving cycle using a finite element method. Then, the design methodology and the results through a specific application are detailed. Particularly, it will be shown how the flux weakening, directly given by the design process via the optimization of the control strategy, allows reducing both the energy losses and the constraints on the power converter. At last, in order to validate the solution considering the whole cycle while keeping a reduced computation time, a reluctance network model of the PMSM is used. This model validate the energy losses and the flux densities in the steel parts over the cycle. The study will be done considering the urban dynamometer driving schedule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2726962</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3892-5469</orcidid><orcidid>https://orcid.org/0000-0002-9258-4132</orcidid><orcidid>https://orcid.org/0000-0001-6956-9236</orcidid><orcidid>https://orcid.org/0000-0003-3301-6896</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-12, Vol.64 (12), p.9834-9843
issn 0278-0046
1557-9948
language eng
recordid cdi_hal_primary_oai_HAL_hal_04018408v1
source IEEE Electronic Library (IEL)
subjects Analytical models
Automotive parts
Design methodology
Design optimization
Dimensional analysis
driving cycle
electric vehicle
Engineering Sciences
Finite element method
Flux
flux weakening
High speed
high-speed permanent magnet synchronous machines (PMSM)
Iron
Magnetic hysteresis
Mathematical models
Optimal control
Power converters
reluctance network (RN)
Stators
Synchronous machines
Torque
title Design Optimization with Flux Weakening of High-Speed PMSM for Electrical Vehicle Considering the Driving Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20with%20Flux%20Weakening%20of%20High-Speed%20PMSM%20for%20Electrical%20Vehicle%20Considering%20the%20Driving%20Cycle&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Linh%20Dang&rft.date=2017-12&rft.volume=64&rft.issue=12&rft.spage=9834&rft.epage=9843&rft.pages=9834-9843&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2726962&rft_dat=%3Cproquest_RIE%3E1956422742%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956422742&rft_id=info:pmid/&rft_ieee_id=7979628&rfr_iscdi=true