A Pseudodifferential Analytic Perspective on Getzler's Rescaling
Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor...
Gespeichert in:
Veröffentlicht in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2024-01, Vol.20 (10) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Symmetry, integrability and geometry, methods and applications |
container_volume | 20 |
creator | Habib, Georges Paycha, Sylvie |
description | Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square. |
doi_str_mv | 10.3842/SIGMA.2024.010 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04017007v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04017007v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-13dff203fc3911ecb410293c0292fbd85603b7709fef6330183b3741fcdc56873</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK5ePfcmHlonH03bm2VxP6Di4sc5pOlEI7Vdkrqw_nq3roiXd16GZ-bwEHJJIeG5YDdPq8V9mTBgIgEKR2RCc5rGINPi-F8_JWchvAMIKSRMyG0ZrQN-Nn3jrEWP3eB0G5WdbneDM9EafdigGdwWo76LFjh8teivQvSIwejWda_n5MTqNuDF75ySl_nd82wZVw-L1aysYsNkPsSUN9Yy4NbwglI0taDACm72wWzd5KkEXmcZFBat5BxozmueCWpNY1KZZ3xKrg9_33SrNt59aL9TvXZqWVZq3IEAmgFkW7ZnkwNrfB-CR_t3QEGNrtSPKzW6UntX_Bt2glrr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Pseudodifferential Analytic Perspective on Getzler's Rescaling</title><source>Math-Net.Ru (free access)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Habib, Georges ; Paycha, Sylvie</creator><creatorcontrib>Habib, Georges ; Paycha, Sylvie ; Lebanese University, Lebanon ; Universität Potsdam, Germany</creatorcontrib><description>Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2024.010</identifier><language>eng</language><publisher>National Academy of Science of Ukraine</publisher><subject>Differential Geometry ; Mathematics</subject><ispartof>Symmetry, integrability and geometry, methods and applications, 2024-01, Vol.20 (10)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04017007$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Habib, Georges</creatorcontrib><creatorcontrib>Paycha, Sylvie</creatorcontrib><creatorcontrib>Lebanese University, Lebanon</creatorcontrib><creatorcontrib>Universität Potsdam, Germany</creatorcontrib><title>A Pseudodifferential Analytic Perspective on Getzler's Rescaling</title><title>Symmetry, integrability and geometry, methods and applications</title><description>Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouK5ePfcmHlonH03bm2VxP6Di4sc5pOlEI7Vdkrqw_nq3roiXd16GZ-bwEHJJIeG5YDdPq8V9mTBgIgEKR2RCc5rGINPi-F8_JWchvAMIKSRMyG0ZrQN-Nn3jrEWP3eB0G5WdbneDM9EafdigGdwWo76LFjh8teivQvSIwejWda_n5MTqNuDF75ySl_nd82wZVw-L1aysYsNkPsSUN9Yy4NbwglI0taDACm72wWzd5KkEXmcZFBat5BxozmueCWpNY1KZZ3xKrg9_33SrNt59aL9TvXZqWVZq3IEAmgFkW7ZnkwNrfB-CR_t3QEGNrtSPKzW6UntX_Bt2glrr</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Habib, Georges</creator><creator>Paycha, Sylvie</creator><general>National Academy of Science of Ukraine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20240130</creationdate><title>A Pseudodifferential Analytic Perspective on Getzler's Rescaling</title><author>Habib, Georges ; Paycha, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-13dff203fc3911ecb410293c0292fbd85603b7709fef6330183b3741fcdc56873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habib, Georges</creatorcontrib><creatorcontrib>Paycha, Sylvie</creatorcontrib><creatorcontrib>Lebanese University, Lebanon</creatorcontrib><creatorcontrib>Universität Potsdam, Germany</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habib, Georges</au><au>Paycha, Sylvie</au><aucorp>Lebanese University, Lebanon</aucorp><aucorp>Universität Potsdam, Germany</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pseudodifferential Analytic Perspective on Getzler's Rescaling</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2024-01-30</date><risdate>2024</risdate><volume>20</volume><issue>10</issue><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square.</abstract><pub>National Academy of Science of Ukraine</pub><doi>10.3842/SIGMA.2024.010</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | Symmetry, integrability and geometry, methods and applications, 2024-01, Vol.20 (10) |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04017007v2 |
source | Math-Net.Ru (free access); Free E-Journal (出版社公開部分のみ) |
subjects | Differential Geometry Mathematics |
title | A Pseudodifferential Analytic Perspective on Getzler's Rescaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pseudodifferential%20Analytic%20Perspective%20on%20Getzler's%20Rescaling&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Habib,%20Georges&rft.aucorp=Lebanese%20University,%20Lebanon&rft.date=2024-01-30&rft.volume=20&rft.issue=10&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2024.010&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04017007v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |