The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging
We present extremely deep Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the MUSE Ultra Deep Field. This unique region of the sky contains two quasars at z ≈ 3.22 that are separated by only ∼500 kpc, providing a stereoscopic view of gas and galaxies in emission and absorptio...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2023-04, Vol.265 (2), p.40 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 40 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 265 |
creator | Revalski, Mitchell Rafelski, Marc Fumagalli, Michele Fossati, Matteo Pirzkal, Norbert Sunnquist, Ben Prichard, Laura J. Henry, Alaina Bagley, Micaela Dutta, Rajeshwari Papini, Giulia Battaia, Fabrizio Arrigoni D’Odorico, Valentina Dayal, Pratika Estrada-Carpenter, Vicente Lofthouse, Emma K. Lusso, Elisabeta Morris, Simon L. Nedkova, Kalina V. Papovich, Casey Peroux, Celine |
description | We present extremely deep Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the MUSE Ultra Deep Field. This unique region of the sky contains two quasars at z ≈ 3.22 that are separated by only ∼500 kpc, providing a stereoscopic view of gas and galaxies in emission and absorption across ∼10 billion years of cosmic time. We have obtained 90 orbits of HST WFC3 G141 near-infrared grism spectroscopy of this field in a single pointing, as well as 142 hr of optical spectroscopy with the Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE). The WFC3 (F140W, F125W, and F336W) and archival WFPC2 (F702W and F450W) imaging provides five-filter photometry that we use to detect 3375 sources between z ≈ 0–6, including 1536 objects in a deep central pointing with both spectroscopic and photometric coverage. The F140W and F336W mosaics reach exceptional depths of m AB ≈ 28 and 29, respectively, providing near-infrared and rest-frame ultraviolet information for 1580 sources, and we reach 5 σ continuum detections for objects as faint as m AB ≈ 27 in the grism spectra. The extensive wavelength coverage of MUSE and WFC3 allows us to measure spectroscopic redshifts for 419 sources, down to galaxy stellar masses of log( M/M ⊙ ) ≈7 at z ≈ 1–2. In this publication, we provide the calibrated HST data and source catalogs as High Level Science Products for use by the community, which includes photometry, morphology, and redshift measurements that enable a variety of studies aimed at advancing our models of galaxy formation and evolution in different environments. |
doi_str_mv | 10.3847/1538-4365/acb8ae |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04006156v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_88ee018acb664c73b95d0bf564a184ea</doaj_id><sourcerecordid>2787651586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7130c3ff420791eba7256942d4b21cec59771ad1d84dbf02e9b2bba47b776ab3</originalsourceid><addsrcrecordid>eNp1kV1r2zAUhsXYoFm3-14KxmCFOpVsffmypE1jSNlFE3YpjuTj1MGJPdkp9N9XnkfHYLsSvHrOA-e8hFxwNs-M0NdcZiYRmZLX4J0BfEdmb9F7MmNM6YQxkZ-Rj32_Z4xpmeUzApsnpA_bxzu6bYYA9Baxo8sam5J-e9jeLi_ntCiKOV2dnGuQPnbgkW6wwd63HdIfy0VG70PdH-IX-iG0Y_5C4VjS4gC7-rj7RD5U0PT4-fd7TjbLu81ilay_3xeLm3XihWFDonnGfFZVImU65-hAp1LlIi2FS7lHL3OtOZS8NKJ0FUsxd6lzILTTWoHLzkkxacsW9rYL9QHCi22htr-CNuwshKH2DVpjEBk38U5KCa8zl8uSuUoqAdwIhOi6nFxP0PylWt2s7ZgxEe_JpXrmkf0ysV1of56wH-y-PYVj3NSm2mgluTQqUmyifLxQH7B603Jmx_7sWJYdy7JTf3Hk6zRSt90fJ3T7KI5UagWzXVlF7uof3H-1r1pNpVs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787651586</pqid></control><display><type>article</type><title>The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Revalski, Mitchell ; Rafelski, Marc ; Fumagalli, Michele ; Fossati, Matteo ; Pirzkal, Norbert ; Sunnquist, Ben ; Prichard, Laura J. ; Henry, Alaina ; Bagley, Micaela ; Dutta, Rajeshwari ; Papini, Giulia ; Battaia, Fabrizio Arrigoni ; D’Odorico, Valentina ; Dayal, Pratika ; Estrada-Carpenter, Vicente ; Lofthouse, Emma K. ; Lusso, Elisabeta ; Morris, Simon L. ; Nedkova, Kalina V. ; Papovich, Casey ; Peroux, Celine</creator><creatorcontrib>Revalski, Mitchell ; Rafelski, Marc ; Fumagalli, Michele ; Fossati, Matteo ; Pirzkal, Norbert ; Sunnquist, Ben ; Prichard, Laura J. ; Henry, Alaina ; Bagley, Micaela ; Dutta, Rajeshwari ; Papini, Giulia ; Battaia, Fabrizio Arrigoni ; D’Odorico, Valentina ; Dayal, Pratika ; Estrada-Carpenter, Vicente ; Lofthouse, Emma K. ; Lusso, Elisabeta ; Morris, Simon L. ; Nedkova, Kalina V. ; Papovich, Casey ; Peroux, Celine</creatorcontrib><description>We present extremely deep Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the MUSE Ultra Deep Field. This unique region of the sky contains two quasars at z ≈ 3.22 that are separated by only ∼500 kpc, providing a stereoscopic view of gas and galaxies in emission and absorption across ∼10 billion years of cosmic time. We have obtained 90 orbits of HST WFC3 G141 near-infrared grism spectroscopy of this field in a single pointing, as well as 142 hr of optical spectroscopy with the Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE). The WFC3 (F140W, F125W, and F336W) and archival WFPC2 (F702W and F450W) imaging provides five-filter photometry that we use to detect 3375 sources between z ≈ 0–6, including 1536 objects in a deep central pointing with both spectroscopic and photometric coverage. The F140W and F336W mosaics reach exceptional depths of m AB ≈ 28 and 29, respectively, providing near-infrared and rest-frame ultraviolet information for 1580 sources, and we reach 5 σ continuum detections for objects as faint as m AB ≈ 27 in the grism spectra. The extensive wavelength coverage of MUSE and WFC3 allows us to measure spectroscopic redshifts for 419 sources, down to galaxy stellar masses of log( M/M ⊙ ) ≈7 at z ≈ 1–2. In this publication, we provide the calibrated HST data and source catalogs as High Level Science Products for use by the community, which includes photometry, morphology, and redshift measurements that enable a variety of studies aimed at advancing our models of galaxy formation and evolution in different environments.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/acb8ae</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Astronomical models ; Astronomical techniques ; Astrophysics ; Field cameras ; Galactic evolution ; Galaxies ; Galaxy abundances ; Galaxy evolution ; Galaxy photometry ; High-redshift galaxies ; Hubble Space Telescope ; Infrared spectroscopy ; Near infrared radiation ; Observational cosmology ; Photometry ; Physics ; Quasars ; Red shift ; Space telescopes ; Spectroscopy ; Spectrum analysis ; Star & galaxy formation ; Very Large Telescope</subject><ispartof>The Astrophysical journal. Supplement series, 2023-04, Vol.265 (2), p.40</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-7130c3ff420791eba7256942d4b21cec59771ad1d84dbf02e9b2bba47b776ab3</citedby><cites>FETCH-LOGICAL-c480t-7130c3ff420791eba7256942d4b21cec59771ad1d84dbf02e9b2bba47b776ab3</cites><orcidid>0000-0003-4866-110X ; 0000-0001-7503-8482 ; 0000-0002-6095-7627 ; 0000-0003-3693-3091 ; 0000-0001-8460-1564 ; 0000-0001-6676-3842 ; 0000-0002-0604-654X ; 0000-0002-9921-9218 ; 0000-0001-8489-2349 ; 0000-0002-4917-7873 ; 0000-0002-5810-318X ; 0000-0002-4770-6137 ; 0000-0002-4288-599X ; 0000-0001-5294-8002 ; 0000-0002-1209-9680 ; 0000-0002-6586-4446 ; 0000-0003-0083-1157 ; 0000-0002-9946-4731 ; 0000-0002-9043-8764 ; 0000-0003-3382-5941 ; 0000-0003-3759-8707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/acb8ae/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,27924,27925,38868,38890,53840,53867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04006156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Revalski, Mitchell</creatorcontrib><creatorcontrib>Rafelski, Marc</creatorcontrib><creatorcontrib>Fumagalli, Michele</creatorcontrib><creatorcontrib>Fossati, Matteo</creatorcontrib><creatorcontrib>Pirzkal, Norbert</creatorcontrib><creatorcontrib>Sunnquist, Ben</creatorcontrib><creatorcontrib>Prichard, Laura J.</creatorcontrib><creatorcontrib>Henry, Alaina</creatorcontrib><creatorcontrib>Bagley, Micaela</creatorcontrib><creatorcontrib>Dutta, Rajeshwari</creatorcontrib><creatorcontrib>Papini, Giulia</creatorcontrib><creatorcontrib>Battaia, Fabrizio Arrigoni</creatorcontrib><creatorcontrib>D’Odorico, Valentina</creatorcontrib><creatorcontrib>Dayal, Pratika</creatorcontrib><creatorcontrib>Estrada-Carpenter, Vicente</creatorcontrib><creatorcontrib>Lofthouse, Emma K.</creatorcontrib><creatorcontrib>Lusso, Elisabeta</creatorcontrib><creatorcontrib>Morris, Simon L.</creatorcontrib><creatorcontrib>Nedkova, Kalina V.</creatorcontrib><creatorcontrib>Papovich, Casey</creatorcontrib><creatorcontrib>Peroux, Celine</creatorcontrib><title>The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>We present extremely deep Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the MUSE Ultra Deep Field. This unique region of the sky contains two quasars at z ≈ 3.22 that are separated by only ∼500 kpc, providing a stereoscopic view of gas and galaxies in emission and absorption across ∼10 billion years of cosmic time. We have obtained 90 orbits of HST WFC3 G141 near-infrared grism spectroscopy of this field in a single pointing, as well as 142 hr of optical spectroscopy with the Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE). The WFC3 (F140W, F125W, and F336W) and archival WFPC2 (F702W and F450W) imaging provides five-filter photometry that we use to detect 3375 sources between z ≈ 0–6, including 1536 objects in a deep central pointing with both spectroscopic and photometric coverage. The F140W and F336W mosaics reach exceptional depths of m AB ≈ 28 and 29, respectively, providing near-infrared and rest-frame ultraviolet information for 1580 sources, and we reach 5 σ continuum detections for objects as faint as m AB ≈ 27 in the grism spectra. The extensive wavelength coverage of MUSE and WFC3 allows us to measure spectroscopic redshifts for 419 sources, down to galaxy stellar masses of log( M/M ⊙ ) ≈7 at z ≈ 1–2. In this publication, we provide the calibrated HST data and source catalogs as High Level Science Products for use by the community, which includes photometry, morphology, and redshift measurements that enable a variety of studies aimed at advancing our models of galaxy formation and evolution in different environments.</description><subject>Astronomical models</subject><subject>Astronomical techniques</subject><subject>Astrophysics</subject><subject>Field cameras</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Galaxy abundances</subject><subject>Galaxy evolution</subject><subject>Galaxy photometry</subject><subject>High-redshift galaxies</subject><subject>Hubble Space Telescope</subject><subject>Infrared spectroscopy</subject><subject>Near infrared radiation</subject><subject>Observational cosmology</subject><subject>Photometry</subject><subject>Physics</subject><subject>Quasars</subject><subject>Red shift</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Star & galaxy formation</subject><subject>Very Large Telescope</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kV1r2zAUhsXYoFm3-14KxmCFOpVsffmypE1jSNlFE3YpjuTj1MGJPdkp9N9XnkfHYLsSvHrOA-e8hFxwNs-M0NdcZiYRmZLX4J0BfEdmb9F7MmNM6YQxkZ-Rj32_Z4xpmeUzApsnpA_bxzu6bYYA9Baxo8sam5J-e9jeLi_ntCiKOV2dnGuQPnbgkW6wwd63HdIfy0VG70PdH-IX-iG0Y_5C4VjS4gC7-rj7RD5U0PT4-fd7TjbLu81ilay_3xeLm3XihWFDonnGfFZVImU65-hAp1LlIi2FS7lHL3OtOZS8NKJ0FUsxd6lzILTTWoHLzkkxacsW9rYL9QHCi22htr-CNuwshKH2DVpjEBk38U5KCa8zl8uSuUoqAdwIhOi6nFxP0PylWt2s7ZgxEe_JpXrmkf0ysV1of56wH-y-PYVj3NSm2mgluTQqUmyifLxQH7B603Jmx_7sWJYdy7JTf3Hk6zRSt90fJ3T7KI5UagWzXVlF7uof3H-1r1pNpVs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Revalski, Mitchell</creator><creator>Rafelski, Marc</creator><creator>Fumagalli, Michele</creator><creator>Fossati, Matteo</creator><creator>Pirzkal, Norbert</creator><creator>Sunnquist, Ben</creator><creator>Prichard, Laura J.</creator><creator>Henry, Alaina</creator><creator>Bagley, Micaela</creator><creator>Dutta, Rajeshwari</creator><creator>Papini, Giulia</creator><creator>Battaia, Fabrizio Arrigoni</creator><creator>D’Odorico, Valentina</creator><creator>Dayal, Pratika</creator><creator>Estrada-Carpenter, Vicente</creator><creator>Lofthouse, Emma K.</creator><creator>Lusso, Elisabeta</creator><creator>Morris, Simon L.</creator><creator>Nedkova, Kalina V.</creator><creator>Papovich, Casey</creator><creator>Peroux, Celine</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4866-110X</orcidid><orcidid>https://orcid.org/0000-0001-7503-8482</orcidid><orcidid>https://orcid.org/0000-0002-6095-7627</orcidid><orcidid>https://orcid.org/0000-0003-3693-3091</orcidid><orcidid>https://orcid.org/0000-0001-8460-1564</orcidid><orcidid>https://orcid.org/0000-0001-6676-3842</orcidid><orcidid>https://orcid.org/0000-0002-0604-654X</orcidid><orcidid>https://orcid.org/0000-0002-9921-9218</orcidid><orcidid>https://orcid.org/0000-0001-8489-2349</orcidid><orcidid>https://orcid.org/0000-0002-4917-7873</orcidid><orcidid>https://orcid.org/0000-0002-5810-318X</orcidid><orcidid>https://orcid.org/0000-0002-4770-6137</orcidid><orcidid>https://orcid.org/0000-0002-4288-599X</orcidid><orcidid>https://orcid.org/0000-0001-5294-8002</orcidid><orcidid>https://orcid.org/0000-0002-1209-9680</orcidid><orcidid>https://orcid.org/0000-0002-6586-4446</orcidid><orcidid>https://orcid.org/0000-0003-0083-1157</orcidid><orcidid>https://orcid.org/0000-0002-9946-4731</orcidid><orcidid>https://orcid.org/0000-0002-9043-8764</orcidid><orcidid>https://orcid.org/0000-0003-3382-5941</orcidid><orcidid>https://orcid.org/0000-0003-3759-8707</orcidid></search><sort><creationdate>20230401</creationdate><title>The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging</title><author>Revalski, Mitchell ; Rafelski, Marc ; Fumagalli, Michele ; Fossati, Matteo ; Pirzkal, Norbert ; Sunnquist, Ben ; Prichard, Laura J. ; Henry, Alaina ; Bagley, Micaela ; Dutta, Rajeshwari ; Papini, Giulia ; Battaia, Fabrizio Arrigoni ; D’Odorico, Valentina ; Dayal, Pratika ; Estrada-Carpenter, Vicente ; Lofthouse, Emma K. ; Lusso, Elisabeta ; Morris, Simon L. ; Nedkova, Kalina V. ; Papovich, Casey ; Peroux, Celine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7130c3ff420791eba7256942d4b21cec59771ad1d84dbf02e9b2bba47b776ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomical models</topic><topic>Astronomical techniques</topic><topic>Astrophysics</topic><topic>Field cameras</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Galaxy abundances</topic><topic>Galaxy evolution</topic><topic>Galaxy photometry</topic><topic>High-redshift galaxies</topic><topic>Hubble Space Telescope</topic><topic>Infrared spectroscopy</topic><topic>Near infrared radiation</topic><topic>Observational cosmology</topic><topic>Photometry</topic><topic>Physics</topic><topic>Quasars</topic><topic>Red shift</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Star & galaxy formation</topic><topic>Very Large Telescope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revalski, Mitchell</creatorcontrib><creatorcontrib>Rafelski, Marc</creatorcontrib><creatorcontrib>Fumagalli, Michele</creatorcontrib><creatorcontrib>Fossati, Matteo</creatorcontrib><creatorcontrib>Pirzkal, Norbert</creatorcontrib><creatorcontrib>Sunnquist, Ben</creatorcontrib><creatorcontrib>Prichard, Laura J.</creatorcontrib><creatorcontrib>Henry, Alaina</creatorcontrib><creatorcontrib>Bagley, Micaela</creatorcontrib><creatorcontrib>Dutta, Rajeshwari</creatorcontrib><creatorcontrib>Papini, Giulia</creatorcontrib><creatorcontrib>Battaia, Fabrizio Arrigoni</creatorcontrib><creatorcontrib>D’Odorico, Valentina</creatorcontrib><creatorcontrib>Dayal, Pratika</creatorcontrib><creatorcontrib>Estrada-Carpenter, Vicente</creatorcontrib><creatorcontrib>Lofthouse, Emma K.</creatorcontrib><creatorcontrib>Lusso, Elisabeta</creatorcontrib><creatorcontrib>Morris, Simon L.</creatorcontrib><creatorcontrib>Nedkova, Kalina V.</creatorcontrib><creatorcontrib>Papovich, Casey</creatorcontrib><creatorcontrib>Peroux, Celine</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revalski, Mitchell</au><au>Rafelski, Marc</au><au>Fumagalli, Michele</au><au>Fossati, Matteo</au><au>Pirzkal, Norbert</au><au>Sunnquist, Ben</au><au>Prichard, Laura J.</au><au>Henry, Alaina</au><au>Bagley, Micaela</au><au>Dutta, Rajeshwari</au><au>Papini, Giulia</au><au>Battaia, Fabrizio Arrigoni</au><au>D’Odorico, Valentina</au><au>Dayal, Pratika</au><au>Estrada-Carpenter, Vicente</au><au>Lofthouse, Emma K.</au><au>Lusso, Elisabeta</au><au>Morris, Simon L.</au><au>Nedkova, Kalina V.</au><au>Papovich, Casey</au><au>Peroux, Celine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>265</volume><issue>2</issue><spage>40</spage><pages>40-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>We present extremely deep Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the MUSE Ultra Deep Field. This unique region of the sky contains two quasars at z ≈ 3.22 that are separated by only ∼500 kpc, providing a stereoscopic view of gas and galaxies in emission and absorption across ∼10 billion years of cosmic time. We have obtained 90 orbits of HST WFC3 G141 near-infrared grism spectroscopy of this field in a single pointing, as well as 142 hr of optical spectroscopy with the Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE). The WFC3 (F140W, F125W, and F336W) and archival WFPC2 (F702W and F450W) imaging provides five-filter photometry that we use to detect 3375 sources between z ≈ 0–6, including 1536 objects in a deep central pointing with both spectroscopic and photometric coverage. The F140W and F336W mosaics reach exceptional depths of m AB ≈ 28 and 29, respectively, providing near-infrared and rest-frame ultraviolet information for 1580 sources, and we reach 5 σ continuum detections for objects as faint as m AB ≈ 27 in the grism spectra. The extensive wavelength coverage of MUSE and WFC3 allows us to measure spectroscopic redshifts for 419 sources, down to galaxy stellar masses of log( M/M ⊙ ) ≈7 at z ≈ 1–2. In this publication, we provide the calibrated HST data and source catalogs as High Level Science Products for use by the community, which includes photometry, morphology, and redshift measurements that enable a variety of studies aimed at advancing our models of galaxy formation and evolution in different environments.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/acb8ae</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4866-110X</orcidid><orcidid>https://orcid.org/0000-0001-7503-8482</orcidid><orcidid>https://orcid.org/0000-0002-6095-7627</orcidid><orcidid>https://orcid.org/0000-0003-3693-3091</orcidid><orcidid>https://orcid.org/0000-0001-8460-1564</orcidid><orcidid>https://orcid.org/0000-0001-6676-3842</orcidid><orcidid>https://orcid.org/0000-0002-0604-654X</orcidid><orcidid>https://orcid.org/0000-0002-9921-9218</orcidid><orcidid>https://orcid.org/0000-0001-8489-2349</orcidid><orcidid>https://orcid.org/0000-0002-4917-7873</orcidid><orcidid>https://orcid.org/0000-0002-5810-318X</orcidid><orcidid>https://orcid.org/0000-0002-4770-6137</orcidid><orcidid>https://orcid.org/0000-0002-4288-599X</orcidid><orcidid>https://orcid.org/0000-0001-5294-8002</orcidid><orcidid>https://orcid.org/0000-0002-1209-9680</orcidid><orcidid>https://orcid.org/0000-0002-6586-4446</orcidid><orcidid>https://orcid.org/0000-0003-0083-1157</orcidid><orcidid>https://orcid.org/0000-0002-9946-4731</orcidid><orcidid>https://orcid.org/0000-0002-9043-8764</orcidid><orcidid>https://orcid.org/0000-0003-3382-5941</orcidid><orcidid>https://orcid.org/0000-0003-3759-8707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2023-04, Vol.265 (2), p.40 |
issn | 0067-0049 1538-4365 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04006156v1 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection |
subjects | Astronomical models Astronomical techniques Astrophysics Field cameras Galactic evolution Galaxies Galaxy abundances Galaxy evolution Galaxy photometry High-redshift galaxies Hubble Space Telescope Infrared spectroscopy Near infrared radiation Observational cosmology Photometry Physics Quasars Red shift Space telescopes Spectroscopy Spectrum analysis Star & galaxy formation Very Large Telescope |
title | The MUSE Ultra Deep Field (MUDF). III. Hubble Space Telescope WFC3 Grism Spectroscopy and Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20MUSE%20Ultra%20Deep%20Field%20(MUDF).%20III.%20Hubble%20Space%20Telescope%20WFC3%20Grism%20Spectroscopy%20and%20Imaging&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Revalski,%20Mitchell&rft.date=2023-04-01&rft.volume=265&rft.issue=2&rft.spage=40&rft.pages=40-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/acb8ae&rft_dat=%3Cproquest_hal_p%3E2787651586%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787651586&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_88ee018acb664c73b95d0bf564a184ea&rfr_iscdi=true |