Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport
Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments...
Gespeichert in:
Veröffentlicht in: | Basin research 2023-08, Vol.35 (4), p.1308-1328 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1328 |
---|---|
container_issue | 4 |
container_start_page | 1308 |
container_title | Basin research |
container_volume | 35 |
creator | Neumann, Florian Negrete‐Aranda, Raquel Harris, Robert N. Contreras, Juan Galerne, Christophe Y. Peña‐Salinas, Manet S. Spelz, Ronald M. Teske, Andreas Lizarralde, Daniel Höfig, Tobias W. Teske, Andreas P. Lizarralde, Daniel Höfig, Tobias W. Aiello, Ivano W. Ash, Janine L. Bojanova, Diana P. Buatier, Martine Edgcomb, Virginia P. Galerne, Christophe Y. Gontharet, Swanne Heuer, Verena B. Jiang, Shijun Kars, Myriam A.C. Kim, Ji‐Hoon Koornneef, Louise M.T. Marsaglia, Kathleen M. Meyer, Nicolette R. Morono, Yuki Negrete‐Aranda, Raquel Neumann, Florian Pastor, Lucie C. Peña‐Salinas, Manet Pérez Cruz, Ligia L. Ran, Lihua Riboulleau, Armelle Sarao, John A. Schubert, Florian Singh, S. Khogenkumar Stock, Joann M. Toffin, Laurent M.A.A. Xie, Wei Yamanaka, Toshiro Zhuang, Guangchao |
description | Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales.
Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation. |
doi_str_mv | 10.1111/bre.12755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04000088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838211743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWD8O_oOAJ8HVzO5mP7y1pbZCQRAFb2G6O2sj201Nti3FP2_WFfFiLmHeefJmmJexCxA34M_twtINhKmUB2wAUSKDECA9ZAORSxGIHF6P2Ylz70KITAIM2OeMsOVVbXYcm5K3S7IrrLmlN70irptO4dMN7lfo-Aidbq59WVfcVHyMta6MbTTe8Ylr9Qpbcl2jME25KVq9pW9TLLfUV8vus9Zi49bGtmfsqMLa0fnPfcpe7ifP41kwf5w-jIfzAKMslwFkeZimC7mAGEQRU1lglBIkUUFRAgWIapFnsawS4XtRKUNEihPyepwJr0Sn7Kr3XWKt1tbPaffKoFaz4Vx1mohFt5BsC5697Nm1NR8bcq16Nxvb-PFUmEVZt834j2NhjXOWql9bEKrLQfkc1HcOnr3t2Z2uaf8_qEZPk_7FF4XPiOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838211743</pqid></control><display><type>article</type><title>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Neumann, Florian ; Negrete‐Aranda, Raquel ; Harris, Robert N. ; Contreras, Juan ; Galerne, Christophe Y. ; Peña‐Salinas, Manet S. ; Spelz, Ronald M. ; Teske, Andreas ; Lizarralde, Daniel ; Höfig, Tobias W. ; Teske, Andreas P. ; Lizarralde, Daniel ; Höfig, Tobias W. ; Aiello, Ivano W. ; Ash, Janine L. ; Bojanova, Diana P. ; Buatier, Martine ; Edgcomb, Virginia P. ; Galerne, Christophe Y. ; Gontharet, Swanne ; Heuer, Verena B. ; Jiang, Shijun ; Kars, Myriam A.C. ; Kim, Ji‐Hoon ; Koornneef, Louise M.T. ; Marsaglia, Kathleen M. ; Meyer, Nicolette R. ; Morono, Yuki ; Negrete‐Aranda, Raquel ; Neumann, Florian ; Pastor, Lucie C. ; Peña‐Salinas, Manet ; Pérez Cruz, Ligia L. ; Ran, Lihua ; Riboulleau, Armelle ; Sarao, John A. ; Schubert, Florian ; Singh, S. Khogenkumar ; Stock, Joann M. ; Toffin, Laurent M.A.A. ; Xie, Wei ; Yamanaka, Toshiro ; Zhuang, Guangchao</creator><creatorcontrib>Neumann, Florian ; Negrete‐Aranda, Raquel ; Harris, Robert N. ; Contreras, Juan ; Galerne, Christophe Y. ; Peña‐Salinas, Manet S. ; Spelz, Ronald M. ; Teske, Andreas ; Lizarralde, Daniel ; Höfig, Tobias W. ; Teske, Andreas P. ; Lizarralde, Daniel ; Höfig, Tobias W. ; Aiello, Ivano W. ; Ash, Janine L. ; Bojanova, Diana P. ; Buatier, Martine ; Edgcomb, Virginia P. ; Galerne, Christophe Y. ; Gontharet, Swanne ; Heuer, Verena B. ; Jiang, Shijun ; Kars, Myriam A.C. ; Kim, Ji‐Hoon ; Koornneef, Louise M.T. ; Marsaglia, Kathleen M. ; Meyer, Nicolette R. ; Morono, Yuki ; Negrete‐Aranda, Raquel ; Neumann, Florian ; Pastor, Lucie C. ; Peña‐Salinas, Manet ; Pérez Cruz, Ligia L. ; Ran, Lihua ; Riboulleau, Armelle ; Sarao, John A. ; Schubert, Florian ; Singh, S. Khogenkumar ; Stock, Joann M. ; Toffin, Laurent M.A.A. ; Xie, Wei ; Yamanaka, Toshiro ; Zhuang, Guangchao ; Expedition 385 Scientists</creatorcontrib><description>Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales.
Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.</description><identifier>ISSN: 0950-091X</identifier><identifier>EISSN: 1365-2117</identifier><identifier>DOI: 10.1111/bre.12755</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Advection ; Biological evolution ; Conduction ; Conduction cooling ; Cooling ; Drilling ; Environmental Sciences ; Evolution ; Expeditions ; Fluids ; Guyamas Basin ; Heat Flow ; Heat Transfer ; Heat transmission ; Heat transport ; Hydrothermal flow ; IODP Expedition 385 ; Lava ; Magma ; Plates (tectonics) ; Relaxation time ; Sediment ; Sedimentation ; Sedimentation & deposition ; Sedimentation rates ; Sediments ; Sills ; Tectonics ; Thermal analysis ; Thermal relaxation</subject><ispartof>Basin research, 2023-08, Vol.35 (4), p.1308-1328</ispartof><rights>2023 The Authors. published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</citedby><cites>FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</cites><orcidid>0000-0002-8016-1167 ; 0000-0002-6807-6904 ; 0000-0002-1856-116X ; 0000-0002-4984-1412 ; 0000-0002-9666-5087 ; 0000-0002-4641-1425 ; 0000-0002-0409-4337 ; 0000-0002-6282-8415 ; 0000-0003-4062-3942 ; 0000-0003-4816-7865 ; 0000-0001-8928-4254 ; 0000-0003-4536-3158 ; 0000-0002-9561-355X ; 0000-0001-6152-6039 ; 0000-0002-5835-0455 ; 0000-0002-9254-4528 ; 0000-0003-3049-4374 ; 0000-0003-3669-5425 ; 0000-0002-2717-8330 ; 0000-0001-6805-381X ; 0000-0001-5436-1117 ; 0000-0002-1618-3978 ; 0000-0001-6259-7912 ; 0000-0003-2430-3869 ; 0000-0003-3863-5127 ; 0000-0001-9696-205X ; 0000-0001-7787-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbre.12755$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbre.12755$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04000088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><creatorcontrib>Contreras, Juan</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet S.</creatorcontrib><creatorcontrib>Spelz, Ronald M.</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Teske, Andreas P.</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Aiello, Ivano W.</creatorcontrib><creatorcontrib>Ash, Janine L.</creatorcontrib><creatorcontrib>Bojanova, Diana P.</creatorcontrib><creatorcontrib>Buatier, Martine</creatorcontrib><creatorcontrib>Edgcomb, Virginia P.</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Gontharet, Swanne</creatorcontrib><creatorcontrib>Heuer, Verena B.</creatorcontrib><creatorcontrib>Jiang, Shijun</creatorcontrib><creatorcontrib>Kars, Myriam A.C.</creatorcontrib><creatorcontrib>Kim, Ji‐Hoon</creatorcontrib><creatorcontrib>Koornneef, Louise M.T.</creatorcontrib><creatorcontrib>Marsaglia, Kathleen M.</creatorcontrib><creatorcontrib>Meyer, Nicolette R.</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Pastor, Lucie C.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet</creatorcontrib><creatorcontrib>Pérez Cruz, Ligia L.</creatorcontrib><creatorcontrib>Ran, Lihua</creatorcontrib><creatorcontrib>Riboulleau, Armelle</creatorcontrib><creatorcontrib>Sarao, John A.</creatorcontrib><creatorcontrib>Schubert, Florian</creatorcontrib><creatorcontrib>Singh, S. Khogenkumar</creatorcontrib><creatorcontrib>Stock, Joann M.</creatorcontrib><creatorcontrib>Toffin, Laurent M.A.A.</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Yamanaka, Toshiro</creatorcontrib><creatorcontrib>Zhuang, Guangchao</creatorcontrib><creatorcontrib>Expedition 385 Scientists</creatorcontrib><title>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</title><title>Basin research</title><description>Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales.
Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.</description><subject>Advection</subject><subject>Biological evolution</subject><subject>Conduction</subject><subject>Conduction cooling</subject><subject>Cooling</subject><subject>Drilling</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>Expeditions</subject><subject>Fluids</subject><subject>Guyamas Basin</subject><subject>Heat Flow</subject><subject>Heat Transfer</subject><subject>Heat transmission</subject><subject>Heat transport</subject><subject>Hydrothermal flow</subject><subject>IODP Expedition 385</subject><subject>Lava</subject><subject>Magma</subject><subject>Plates (tectonics)</subject><subject>Relaxation time</subject><subject>Sediment</subject><subject>Sedimentation</subject><subject>Sedimentation & deposition</subject><subject>Sedimentation rates</subject><subject>Sediments</subject><subject>Sills</subject><subject>Tectonics</subject><subject>Thermal analysis</subject><subject>Thermal relaxation</subject><issn>0950-091X</issn><issn>1365-2117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LAzEQhoMoWD8O_oOAJ8HVzO5mP7y1pbZCQRAFb2G6O2sj201Nti3FP2_WFfFiLmHeefJmmJexCxA34M_twtINhKmUB2wAUSKDECA9ZAORSxGIHF6P2Ylz70KITAIM2OeMsOVVbXYcm5K3S7IrrLmlN70irptO4dMN7lfo-Aidbq59WVfcVHyMta6MbTTe8Ylr9Qpbcl2jME25KVq9pW9TLLfUV8vus9Zi49bGtmfsqMLa0fnPfcpe7ifP41kwf5w-jIfzAKMslwFkeZimC7mAGEQRU1lglBIkUUFRAgWIapFnsawS4XtRKUNEihPyepwJr0Sn7Kr3XWKt1tbPaffKoFaz4Vx1mohFt5BsC5697Nm1NR8bcq16Nxvb-PFUmEVZt834j2NhjXOWql9bEKrLQfkc1HcOnr3t2Z2uaf8_qEZPk_7FF4XPiOg</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Neumann, Florian</creator><creator>Negrete‐Aranda, Raquel</creator><creator>Harris, Robert N.</creator><creator>Contreras, Juan</creator><creator>Galerne, Christophe Y.</creator><creator>Peña‐Salinas, Manet S.</creator><creator>Spelz, Ronald M.</creator><creator>Teske, Andreas</creator><creator>Lizarralde, Daniel</creator><creator>Höfig, Tobias W.</creator><creator>Teske, Andreas P.</creator><creator>Lizarralde, Daniel</creator><creator>Höfig, Tobias W.</creator><creator>Aiello, Ivano W.</creator><creator>Ash, Janine L.</creator><creator>Bojanova, Diana P.</creator><creator>Buatier, Martine</creator><creator>Edgcomb, Virginia P.</creator><creator>Galerne, Christophe Y.</creator><creator>Gontharet, Swanne</creator><creator>Heuer, Verena B.</creator><creator>Jiang, Shijun</creator><creator>Kars, Myriam A.C.</creator><creator>Kim, Ji‐Hoon</creator><creator>Koornneef, Louise M.T.</creator><creator>Marsaglia, Kathleen M.</creator><creator>Meyer, Nicolette R.</creator><creator>Morono, Yuki</creator><creator>Negrete‐Aranda, Raquel</creator><creator>Neumann, Florian</creator><creator>Pastor, Lucie C.</creator><creator>Peña‐Salinas, Manet</creator><creator>Pérez Cruz, Ligia L.</creator><creator>Ran, Lihua</creator><creator>Riboulleau, Armelle</creator><creator>Sarao, John A.</creator><creator>Schubert, Florian</creator><creator>Singh, S. Khogenkumar</creator><creator>Stock, Joann M.</creator><creator>Toffin, Laurent M.A.A.</creator><creator>Xie, Wei</creator><creator>Yamanaka, Toshiro</creator><creator>Zhuang, Guangchao</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8016-1167</orcidid><orcidid>https://orcid.org/0000-0002-6807-6904</orcidid><orcidid>https://orcid.org/0000-0002-1856-116X</orcidid><orcidid>https://orcid.org/0000-0002-4984-1412</orcidid><orcidid>https://orcid.org/0000-0002-9666-5087</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid><orcidid>https://orcid.org/0000-0002-0409-4337</orcidid><orcidid>https://orcid.org/0000-0002-6282-8415</orcidid><orcidid>https://orcid.org/0000-0003-4062-3942</orcidid><orcidid>https://orcid.org/0000-0003-4816-7865</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-4536-3158</orcidid><orcidid>https://orcid.org/0000-0002-9561-355X</orcidid><orcidid>https://orcid.org/0000-0001-6152-6039</orcidid><orcidid>https://orcid.org/0000-0002-5835-0455</orcidid><orcidid>https://orcid.org/0000-0002-9254-4528</orcidid><orcidid>https://orcid.org/0000-0003-3049-4374</orcidid><orcidid>https://orcid.org/0000-0003-3669-5425</orcidid><orcidid>https://orcid.org/0000-0002-2717-8330</orcidid><orcidid>https://orcid.org/0000-0001-6805-381X</orcidid><orcidid>https://orcid.org/0000-0001-5436-1117</orcidid><orcidid>https://orcid.org/0000-0002-1618-3978</orcidid><orcidid>https://orcid.org/0000-0001-6259-7912</orcidid><orcidid>https://orcid.org/0000-0003-2430-3869</orcidid><orcidid>https://orcid.org/0000-0003-3863-5127</orcidid><orcidid>https://orcid.org/0000-0001-9696-205X</orcidid><orcidid>https://orcid.org/0000-0001-7787-6682</orcidid></search><sort><creationdate>202308</creationdate><title>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</title><author>Neumann, Florian ; Negrete‐Aranda, Raquel ; Harris, Robert N. ; Contreras, Juan ; Galerne, Christophe Y. ; Peña‐Salinas, Manet S. ; Spelz, Ronald M. ; Teske, Andreas ; Lizarralde, Daniel ; Höfig, Tobias W. ; Teske, Andreas P. ; Lizarralde, Daniel ; Höfig, Tobias W. ; Aiello, Ivano W. ; Ash, Janine L. ; Bojanova, Diana P. ; Buatier, Martine ; Edgcomb, Virginia P. ; Galerne, Christophe Y. ; Gontharet, Swanne ; Heuer, Verena B. ; Jiang, Shijun ; Kars, Myriam A.C. ; Kim, Ji‐Hoon ; Koornneef, Louise M.T. ; Marsaglia, Kathleen M. ; Meyer, Nicolette R. ; Morono, Yuki ; Negrete‐Aranda, Raquel ; Neumann, Florian ; Pastor, Lucie C. ; Peña‐Salinas, Manet ; Pérez Cruz, Ligia L. ; Ran, Lihua ; Riboulleau, Armelle ; Sarao, John A. ; Schubert, Florian ; Singh, S. Khogenkumar ; Stock, Joann M. ; Toffin, Laurent M.A.A. ; Xie, Wei ; Yamanaka, Toshiro ; Zhuang, Guangchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Biological evolution</topic><topic>Conduction</topic><topic>Conduction cooling</topic><topic>Cooling</topic><topic>Drilling</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>Expeditions</topic><topic>Fluids</topic><topic>Guyamas Basin</topic><topic>Heat Flow</topic><topic>Heat Transfer</topic><topic>Heat transmission</topic><topic>Heat transport</topic><topic>Hydrothermal flow</topic><topic>IODP Expedition 385</topic><topic>Lava</topic><topic>Magma</topic><topic>Plates (tectonics)</topic><topic>Relaxation time</topic><topic>Sediment</topic><topic>Sedimentation</topic><topic>Sedimentation & deposition</topic><topic>Sedimentation rates</topic><topic>Sediments</topic><topic>Sills</topic><topic>Tectonics</topic><topic>Thermal analysis</topic><topic>Thermal relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><creatorcontrib>Contreras, Juan</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet S.</creatorcontrib><creatorcontrib>Spelz, Ronald M.</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Teske, Andreas P.</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Aiello, Ivano W.</creatorcontrib><creatorcontrib>Ash, Janine L.</creatorcontrib><creatorcontrib>Bojanova, Diana P.</creatorcontrib><creatorcontrib>Buatier, Martine</creatorcontrib><creatorcontrib>Edgcomb, Virginia P.</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Gontharet, Swanne</creatorcontrib><creatorcontrib>Heuer, Verena B.</creatorcontrib><creatorcontrib>Jiang, Shijun</creatorcontrib><creatorcontrib>Kars, Myriam A.C.</creatorcontrib><creatorcontrib>Kim, Ji‐Hoon</creatorcontrib><creatorcontrib>Koornneef, Louise M.T.</creatorcontrib><creatorcontrib>Marsaglia, Kathleen M.</creatorcontrib><creatorcontrib>Meyer, Nicolette R.</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Pastor, Lucie C.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet</creatorcontrib><creatorcontrib>Pérez Cruz, Ligia L.</creatorcontrib><creatorcontrib>Ran, Lihua</creatorcontrib><creatorcontrib>Riboulleau, Armelle</creatorcontrib><creatorcontrib>Sarao, John A.</creatorcontrib><creatorcontrib>Schubert, Florian</creatorcontrib><creatorcontrib>Singh, S. Khogenkumar</creatorcontrib><creatorcontrib>Stock, Joann M.</creatorcontrib><creatorcontrib>Toffin, Laurent M.A.A.</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Yamanaka, Toshiro</creatorcontrib><creatorcontrib>Zhuang, Guangchao</creatorcontrib><creatorcontrib>Expedition 385 Scientists</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Basin research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumann, Florian</au><au>Negrete‐Aranda, Raquel</au><au>Harris, Robert N.</au><au>Contreras, Juan</au><au>Galerne, Christophe Y.</au><au>Peña‐Salinas, Manet S.</au><au>Spelz, Ronald M.</au><au>Teske, Andreas</au><au>Lizarralde, Daniel</au><au>Höfig, Tobias W.</au><au>Teske, Andreas P.</au><au>Lizarralde, Daniel</au><au>Höfig, Tobias W.</au><au>Aiello, Ivano W.</au><au>Ash, Janine L.</au><au>Bojanova, Diana P.</au><au>Buatier, Martine</au><au>Edgcomb, Virginia P.</au><au>Galerne, Christophe Y.</au><au>Gontharet, Swanne</au><au>Heuer, Verena B.</au><au>Jiang, Shijun</au><au>Kars, Myriam A.C.</au><au>Kim, Ji‐Hoon</au><au>Koornneef, Louise M.T.</au><au>Marsaglia, Kathleen M.</au><au>Meyer, Nicolette R.</au><au>Morono, Yuki</au><au>Negrete‐Aranda, Raquel</au><au>Neumann, Florian</au><au>Pastor, Lucie C.</au><au>Peña‐Salinas, Manet</au><au>Pérez Cruz, Ligia L.</au><au>Ran, Lihua</au><au>Riboulleau, Armelle</au><au>Sarao, John A.</au><au>Schubert, Florian</au><au>Singh, S. Khogenkumar</au><au>Stock, Joann M.</au><au>Toffin, Laurent M.A.A.</au><au>Xie, Wei</au><au>Yamanaka, Toshiro</au><au>Zhuang, Guangchao</au><aucorp>Expedition 385 Scientists</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</atitle><jtitle>Basin research</jtitle><date>2023-08</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1308</spage><epage>1328</epage><pages>1308-1328</pages><issn>0950-091X</issn><eissn>1365-2117</eissn><abstract>Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales.
Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/bre.12755</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8016-1167</orcidid><orcidid>https://orcid.org/0000-0002-6807-6904</orcidid><orcidid>https://orcid.org/0000-0002-1856-116X</orcidid><orcidid>https://orcid.org/0000-0002-4984-1412</orcidid><orcidid>https://orcid.org/0000-0002-9666-5087</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid><orcidid>https://orcid.org/0000-0002-0409-4337</orcidid><orcidid>https://orcid.org/0000-0002-6282-8415</orcidid><orcidid>https://orcid.org/0000-0003-4062-3942</orcidid><orcidid>https://orcid.org/0000-0003-4816-7865</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-4536-3158</orcidid><orcidid>https://orcid.org/0000-0002-9561-355X</orcidid><orcidid>https://orcid.org/0000-0001-6152-6039</orcidid><orcidid>https://orcid.org/0000-0002-5835-0455</orcidid><orcidid>https://orcid.org/0000-0002-9254-4528</orcidid><orcidid>https://orcid.org/0000-0003-3049-4374</orcidid><orcidid>https://orcid.org/0000-0003-3669-5425</orcidid><orcidid>https://orcid.org/0000-0002-2717-8330</orcidid><orcidid>https://orcid.org/0000-0001-6805-381X</orcidid><orcidid>https://orcid.org/0000-0001-5436-1117</orcidid><orcidid>https://orcid.org/0000-0002-1618-3978</orcidid><orcidid>https://orcid.org/0000-0001-6259-7912</orcidid><orcidid>https://orcid.org/0000-0003-2430-3869</orcidid><orcidid>https://orcid.org/0000-0003-3863-5127</orcidid><orcidid>https://orcid.org/0000-0001-9696-205X</orcidid><orcidid>https://orcid.org/0000-0001-7787-6682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-091X |
ispartof | Basin research, 2023-08, Vol.35 (4), p.1308-1328 |
issn | 0950-091X 1365-2117 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04000088v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Advection Biological evolution Conduction Conduction cooling Cooling Drilling Environmental Sciences Evolution Expeditions Fluids Guyamas Basin Heat Flow Heat Transfer Heat transmission Heat transport Hydrothermal flow IODP Expedition 385 Lava Magma Plates (tectonics) Relaxation time Sediment Sedimentation Sedimentation & deposition Sedimentation rates Sediments Sills Tectonics Thermal analysis Thermal relaxation |
title | Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20flow%20and%20thermal%20regime%20in%20the%20Guaymas%20Basin,%20Gulf%20of%20California:%20Estimates%20of%20conductive%20and%20advective%20heat%20transport&rft.jtitle=Basin%20research&rft.au=Neumann,%20Florian&rft.aucorp=Expedition%20385%20Scientists&rft.date=2023-08&rft.volume=35&rft.issue=4&rft.spage=1308&rft.epage=1328&rft.pages=1308-1328&rft.issn=0950-091X&rft.eissn=1365-2117&rft_id=info:doi/10.1111/bre.12755&rft_dat=%3Cproquest_hal_p%3E2838211743%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838211743&rft_id=info:pmid/&rfr_iscdi=true |