Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport

Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basin research 2023-08, Vol.35 (4), p.1308-1328
Hauptverfasser: Neumann, Florian, Negrete‐Aranda, Raquel, Harris, Robert N., Contreras, Juan, Galerne, Christophe Y., Peña‐Salinas, Manet S., Spelz, Ronald M., Teske, Andreas, Lizarralde, Daniel, Höfig, Tobias W., Teske, Andreas P., Aiello, Ivano W., Ash, Janine L., Bojanova, Diana P., Buatier, Martine, Edgcomb, Virginia P., Gontharet, Swanne, Heuer, Verena B., Jiang, Shijun, Kars, Myriam A.C., Kim, Ji‐Hoon, Koornneef, Louise M.T., Marsaglia, Kathleen M., Meyer, Nicolette R., Morono, Yuki, Pastor, Lucie C., Peña‐Salinas, Manet, Pérez Cruz, Ligia L., Ran, Lihua, Riboulleau, Armelle, Sarao, John A., Schubert, Florian, Singh, S. Khogenkumar, Stock, Joann M., Toffin, Laurent M.A.A., Xie, Wei, Yamanaka, Toshiro, Zhuang, Guangchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1328
container_issue 4
container_start_page 1308
container_title Basin research
container_volume 35
creator Neumann, Florian
Negrete‐Aranda, Raquel
Harris, Robert N.
Contreras, Juan
Galerne, Christophe Y.
Peña‐Salinas, Manet S.
Spelz, Ronald M.
Teske, Andreas
Lizarralde, Daniel
Höfig, Tobias W.
Teske, Andreas P.
Lizarralde, Daniel
Höfig, Tobias W.
Aiello, Ivano W.
Ash, Janine L.
Bojanova, Diana P.
Buatier, Martine
Edgcomb, Virginia P.
Galerne, Christophe Y.
Gontharet, Swanne
Heuer, Verena B.
Jiang, Shijun
Kars, Myriam A.C.
Kim, Ji‐Hoon
Koornneef, Louise M.T.
Marsaglia, Kathleen M.
Meyer, Nicolette R.
Morono, Yuki
Negrete‐Aranda, Raquel
Neumann, Florian
Pastor, Lucie C.
Peña‐Salinas, Manet
Pérez Cruz, Ligia L.
Ran, Lihua
Riboulleau, Armelle
Sarao, John A.
Schubert, Florian
Singh, S. Khogenkumar
Stock, Joann M.
Toffin, Laurent M.A.A.
Xie, Wei
Yamanaka, Toshiro
Zhuang, Guangchao
description Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales. Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.
doi_str_mv 10.1111/bre.12755
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04000088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838211743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWD8O_oOAJ8HVzO5mP7y1pbZCQRAFb2G6O2sj201Nti3FP2_WFfFiLmHeefJmmJexCxA34M_twtINhKmUB2wAUSKDECA9ZAORSxGIHF6P2Ylz70KITAIM2OeMsOVVbXYcm5K3S7IrrLmlN70irptO4dMN7lfo-Aidbq59WVfcVHyMta6MbTTe8Ylr9Qpbcl2jME25KVq9pW9TLLfUV8vus9Zi49bGtmfsqMLa0fnPfcpe7ifP41kwf5w-jIfzAKMslwFkeZimC7mAGEQRU1lglBIkUUFRAgWIapFnsawS4XtRKUNEihPyepwJr0Sn7Kr3XWKt1tbPaffKoFaz4Vx1mohFt5BsC5697Nm1NR8bcq16Nxvb-PFUmEVZt834j2NhjXOWql9bEKrLQfkc1HcOnr3t2Z2uaf8_qEZPk_7FF4XPiOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838211743</pqid></control><display><type>article</type><title>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Neumann, Florian ; Negrete‐Aranda, Raquel ; Harris, Robert N. ; Contreras, Juan ; Galerne, Christophe Y. ; Peña‐Salinas, Manet S. ; Spelz, Ronald M. ; Teske, Andreas ; Lizarralde, Daniel ; Höfig, Tobias W. ; Teske, Andreas P. ; Lizarralde, Daniel ; Höfig, Tobias W. ; Aiello, Ivano W. ; Ash, Janine L. ; Bojanova, Diana P. ; Buatier, Martine ; Edgcomb, Virginia P. ; Galerne, Christophe Y. ; Gontharet, Swanne ; Heuer, Verena B. ; Jiang, Shijun ; Kars, Myriam A.C. ; Kim, Ji‐Hoon ; Koornneef, Louise M.T. ; Marsaglia, Kathleen M. ; Meyer, Nicolette R. ; Morono, Yuki ; Negrete‐Aranda, Raquel ; Neumann, Florian ; Pastor, Lucie C. ; Peña‐Salinas, Manet ; Pérez Cruz, Ligia L. ; Ran, Lihua ; Riboulleau, Armelle ; Sarao, John A. ; Schubert, Florian ; Singh, S. Khogenkumar ; Stock, Joann M. ; Toffin, Laurent M.A.A. ; Xie, Wei ; Yamanaka, Toshiro ; Zhuang, Guangchao</creator><creatorcontrib>Neumann, Florian ; Negrete‐Aranda, Raquel ; Harris, Robert N. ; Contreras, Juan ; Galerne, Christophe Y. ; Peña‐Salinas, Manet S. ; Spelz, Ronald M. ; Teske, Andreas ; Lizarralde, Daniel ; Höfig, Tobias W. ; Teske, Andreas P. ; Lizarralde, Daniel ; Höfig, Tobias W. ; Aiello, Ivano W. ; Ash, Janine L. ; Bojanova, Diana P. ; Buatier, Martine ; Edgcomb, Virginia P. ; Galerne, Christophe Y. ; Gontharet, Swanne ; Heuer, Verena B. ; Jiang, Shijun ; Kars, Myriam A.C. ; Kim, Ji‐Hoon ; Koornneef, Louise M.T. ; Marsaglia, Kathleen M. ; Meyer, Nicolette R. ; Morono, Yuki ; Negrete‐Aranda, Raquel ; Neumann, Florian ; Pastor, Lucie C. ; Peña‐Salinas, Manet ; Pérez Cruz, Ligia L. ; Ran, Lihua ; Riboulleau, Armelle ; Sarao, John A. ; Schubert, Florian ; Singh, S. Khogenkumar ; Stock, Joann M. ; Toffin, Laurent M.A.A. ; Xie, Wei ; Yamanaka, Toshiro ; Zhuang, Guangchao ; Expedition 385 Scientists</creatorcontrib><description>Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages &gt;0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales. Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.</description><identifier>ISSN: 0950-091X</identifier><identifier>EISSN: 1365-2117</identifier><identifier>DOI: 10.1111/bre.12755</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Advection ; Biological evolution ; Conduction ; Conduction cooling ; Cooling ; Drilling ; Environmental Sciences ; Evolution ; Expeditions ; Fluids ; Guyamas Basin ; Heat Flow ; Heat Transfer ; Heat transmission ; Heat transport ; Hydrothermal flow ; IODP Expedition 385 ; Lava ; Magma ; Plates (tectonics) ; Relaxation time ; Sediment ; Sedimentation ; Sedimentation &amp; deposition ; Sedimentation rates ; Sediments ; Sills ; Tectonics ; Thermal analysis ; Thermal relaxation</subject><ispartof>Basin research, 2023-08, Vol.35 (4), p.1308-1328</ispartof><rights>2023 The Authors. published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</citedby><cites>FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</cites><orcidid>0000-0002-8016-1167 ; 0000-0002-6807-6904 ; 0000-0002-1856-116X ; 0000-0002-4984-1412 ; 0000-0002-9666-5087 ; 0000-0002-4641-1425 ; 0000-0002-0409-4337 ; 0000-0002-6282-8415 ; 0000-0003-4062-3942 ; 0000-0003-4816-7865 ; 0000-0001-8928-4254 ; 0000-0003-4536-3158 ; 0000-0002-9561-355X ; 0000-0001-6152-6039 ; 0000-0002-5835-0455 ; 0000-0002-9254-4528 ; 0000-0003-3049-4374 ; 0000-0003-3669-5425 ; 0000-0002-2717-8330 ; 0000-0001-6805-381X ; 0000-0001-5436-1117 ; 0000-0002-1618-3978 ; 0000-0001-6259-7912 ; 0000-0003-2430-3869 ; 0000-0003-3863-5127 ; 0000-0001-9696-205X ; 0000-0001-7787-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbre.12755$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbre.12755$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04000088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><creatorcontrib>Contreras, Juan</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet S.</creatorcontrib><creatorcontrib>Spelz, Ronald M.</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Teske, Andreas P.</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Aiello, Ivano W.</creatorcontrib><creatorcontrib>Ash, Janine L.</creatorcontrib><creatorcontrib>Bojanova, Diana P.</creatorcontrib><creatorcontrib>Buatier, Martine</creatorcontrib><creatorcontrib>Edgcomb, Virginia P.</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Gontharet, Swanne</creatorcontrib><creatorcontrib>Heuer, Verena B.</creatorcontrib><creatorcontrib>Jiang, Shijun</creatorcontrib><creatorcontrib>Kars, Myriam A.C.</creatorcontrib><creatorcontrib>Kim, Ji‐Hoon</creatorcontrib><creatorcontrib>Koornneef, Louise M.T.</creatorcontrib><creatorcontrib>Marsaglia, Kathleen M.</creatorcontrib><creatorcontrib>Meyer, Nicolette R.</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Pastor, Lucie C.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet</creatorcontrib><creatorcontrib>Pérez Cruz, Ligia L.</creatorcontrib><creatorcontrib>Ran, Lihua</creatorcontrib><creatorcontrib>Riboulleau, Armelle</creatorcontrib><creatorcontrib>Sarao, John A.</creatorcontrib><creatorcontrib>Schubert, Florian</creatorcontrib><creatorcontrib>Singh, S. Khogenkumar</creatorcontrib><creatorcontrib>Stock, Joann M.</creatorcontrib><creatorcontrib>Toffin, Laurent M.A.A.</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Yamanaka, Toshiro</creatorcontrib><creatorcontrib>Zhuang, Guangchao</creatorcontrib><creatorcontrib>Expedition 385 Scientists</creatorcontrib><title>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</title><title>Basin research</title><description>Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages &gt;0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales. Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.</description><subject>Advection</subject><subject>Biological evolution</subject><subject>Conduction</subject><subject>Conduction cooling</subject><subject>Cooling</subject><subject>Drilling</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>Expeditions</subject><subject>Fluids</subject><subject>Guyamas Basin</subject><subject>Heat Flow</subject><subject>Heat Transfer</subject><subject>Heat transmission</subject><subject>Heat transport</subject><subject>Hydrothermal flow</subject><subject>IODP Expedition 385</subject><subject>Lava</subject><subject>Magma</subject><subject>Plates (tectonics)</subject><subject>Relaxation time</subject><subject>Sediment</subject><subject>Sedimentation</subject><subject>Sedimentation &amp; deposition</subject><subject>Sedimentation rates</subject><subject>Sediments</subject><subject>Sills</subject><subject>Tectonics</subject><subject>Thermal analysis</subject><subject>Thermal relaxation</subject><issn>0950-091X</issn><issn>1365-2117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LAzEQhoMoWD8O_oOAJ8HVzO5mP7y1pbZCQRAFb2G6O2sj201Nti3FP2_WFfFiLmHeefJmmJexCxA34M_twtINhKmUB2wAUSKDECA9ZAORSxGIHF6P2Ylz70KITAIM2OeMsOVVbXYcm5K3S7IrrLmlN70irptO4dMN7lfo-Aidbq59WVfcVHyMta6MbTTe8Ylr9Qpbcl2jME25KVq9pW9TLLfUV8vus9Zi49bGtmfsqMLa0fnPfcpe7ifP41kwf5w-jIfzAKMslwFkeZimC7mAGEQRU1lglBIkUUFRAgWIapFnsawS4XtRKUNEihPyepwJr0Sn7Kr3XWKt1tbPaffKoFaz4Vx1mohFt5BsC5697Nm1NR8bcq16Nxvb-PFUmEVZt834j2NhjXOWql9bEKrLQfkc1HcOnr3t2Z2uaf8_qEZPk_7FF4XPiOg</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Neumann, Florian</creator><creator>Negrete‐Aranda, Raquel</creator><creator>Harris, Robert N.</creator><creator>Contreras, Juan</creator><creator>Galerne, Christophe Y.</creator><creator>Peña‐Salinas, Manet S.</creator><creator>Spelz, Ronald M.</creator><creator>Teske, Andreas</creator><creator>Lizarralde, Daniel</creator><creator>Höfig, Tobias W.</creator><creator>Teske, Andreas P.</creator><creator>Lizarralde, Daniel</creator><creator>Höfig, Tobias W.</creator><creator>Aiello, Ivano W.</creator><creator>Ash, Janine L.</creator><creator>Bojanova, Diana P.</creator><creator>Buatier, Martine</creator><creator>Edgcomb, Virginia P.</creator><creator>Galerne, Christophe Y.</creator><creator>Gontharet, Swanne</creator><creator>Heuer, Verena B.</creator><creator>Jiang, Shijun</creator><creator>Kars, Myriam A.C.</creator><creator>Kim, Ji‐Hoon</creator><creator>Koornneef, Louise M.T.</creator><creator>Marsaglia, Kathleen M.</creator><creator>Meyer, Nicolette R.</creator><creator>Morono, Yuki</creator><creator>Negrete‐Aranda, Raquel</creator><creator>Neumann, Florian</creator><creator>Pastor, Lucie C.</creator><creator>Peña‐Salinas, Manet</creator><creator>Pérez Cruz, Ligia L.</creator><creator>Ran, Lihua</creator><creator>Riboulleau, Armelle</creator><creator>Sarao, John A.</creator><creator>Schubert, Florian</creator><creator>Singh, S. Khogenkumar</creator><creator>Stock, Joann M.</creator><creator>Toffin, Laurent M.A.A.</creator><creator>Xie, Wei</creator><creator>Yamanaka, Toshiro</creator><creator>Zhuang, Guangchao</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8016-1167</orcidid><orcidid>https://orcid.org/0000-0002-6807-6904</orcidid><orcidid>https://orcid.org/0000-0002-1856-116X</orcidid><orcidid>https://orcid.org/0000-0002-4984-1412</orcidid><orcidid>https://orcid.org/0000-0002-9666-5087</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid><orcidid>https://orcid.org/0000-0002-0409-4337</orcidid><orcidid>https://orcid.org/0000-0002-6282-8415</orcidid><orcidid>https://orcid.org/0000-0003-4062-3942</orcidid><orcidid>https://orcid.org/0000-0003-4816-7865</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-4536-3158</orcidid><orcidid>https://orcid.org/0000-0002-9561-355X</orcidid><orcidid>https://orcid.org/0000-0001-6152-6039</orcidid><orcidid>https://orcid.org/0000-0002-5835-0455</orcidid><orcidid>https://orcid.org/0000-0002-9254-4528</orcidid><orcidid>https://orcid.org/0000-0003-3049-4374</orcidid><orcidid>https://orcid.org/0000-0003-3669-5425</orcidid><orcidid>https://orcid.org/0000-0002-2717-8330</orcidid><orcidid>https://orcid.org/0000-0001-6805-381X</orcidid><orcidid>https://orcid.org/0000-0001-5436-1117</orcidid><orcidid>https://orcid.org/0000-0002-1618-3978</orcidid><orcidid>https://orcid.org/0000-0001-6259-7912</orcidid><orcidid>https://orcid.org/0000-0003-2430-3869</orcidid><orcidid>https://orcid.org/0000-0003-3863-5127</orcidid><orcidid>https://orcid.org/0000-0001-9696-205X</orcidid><orcidid>https://orcid.org/0000-0001-7787-6682</orcidid></search><sort><creationdate>202308</creationdate><title>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</title><author>Neumann, Florian ; Negrete‐Aranda, Raquel ; Harris, Robert N. ; Contreras, Juan ; Galerne, Christophe Y. ; Peña‐Salinas, Manet S. ; Spelz, Ronald M. ; Teske, Andreas ; Lizarralde, Daniel ; Höfig, Tobias W. ; Teske, Andreas P. ; Lizarralde, Daniel ; Höfig, Tobias W. ; Aiello, Ivano W. ; Ash, Janine L. ; Bojanova, Diana P. ; Buatier, Martine ; Edgcomb, Virginia P. ; Galerne, Christophe Y. ; Gontharet, Swanne ; Heuer, Verena B. ; Jiang, Shijun ; Kars, Myriam A.C. ; Kim, Ji‐Hoon ; Koornneef, Louise M.T. ; Marsaglia, Kathleen M. ; Meyer, Nicolette R. ; Morono, Yuki ; Negrete‐Aranda, Raquel ; Neumann, Florian ; Pastor, Lucie C. ; Peña‐Salinas, Manet ; Pérez Cruz, Ligia L. ; Ran, Lihua ; Riboulleau, Armelle ; Sarao, John A. ; Schubert, Florian ; Singh, S. Khogenkumar ; Stock, Joann M. ; Toffin, Laurent M.A.A. ; Xie, Wei ; Yamanaka, Toshiro ; Zhuang, Guangchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3895-189277b5b1410c4edca37e163ce361c10fb9845f604ed3d52aae46e10f480ed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Biological evolution</topic><topic>Conduction</topic><topic>Conduction cooling</topic><topic>Cooling</topic><topic>Drilling</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>Expeditions</topic><topic>Fluids</topic><topic>Guyamas Basin</topic><topic>Heat Flow</topic><topic>Heat Transfer</topic><topic>Heat transmission</topic><topic>Heat transport</topic><topic>Hydrothermal flow</topic><topic>IODP Expedition 385</topic><topic>Lava</topic><topic>Magma</topic><topic>Plates (tectonics)</topic><topic>Relaxation time</topic><topic>Sediment</topic><topic>Sedimentation</topic><topic>Sedimentation &amp; deposition</topic><topic>Sedimentation rates</topic><topic>Sediments</topic><topic>Sills</topic><topic>Tectonics</topic><topic>Thermal analysis</topic><topic>Thermal relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><creatorcontrib>Contreras, Juan</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet S.</creatorcontrib><creatorcontrib>Spelz, Ronald M.</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Teske, Andreas P.</creatorcontrib><creatorcontrib>Lizarralde, Daniel</creatorcontrib><creatorcontrib>Höfig, Tobias W.</creatorcontrib><creatorcontrib>Aiello, Ivano W.</creatorcontrib><creatorcontrib>Ash, Janine L.</creatorcontrib><creatorcontrib>Bojanova, Diana P.</creatorcontrib><creatorcontrib>Buatier, Martine</creatorcontrib><creatorcontrib>Edgcomb, Virginia P.</creatorcontrib><creatorcontrib>Galerne, Christophe Y.</creatorcontrib><creatorcontrib>Gontharet, Swanne</creatorcontrib><creatorcontrib>Heuer, Verena B.</creatorcontrib><creatorcontrib>Jiang, Shijun</creatorcontrib><creatorcontrib>Kars, Myriam A.C.</creatorcontrib><creatorcontrib>Kim, Ji‐Hoon</creatorcontrib><creatorcontrib>Koornneef, Louise M.T.</creatorcontrib><creatorcontrib>Marsaglia, Kathleen M.</creatorcontrib><creatorcontrib>Meyer, Nicolette R.</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Negrete‐Aranda, Raquel</creatorcontrib><creatorcontrib>Neumann, Florian</creatorcontrib><creatorcontrib>Pastor, Lucie C.</creatorcontrib><creatorcontrib>Peña‐Salinas, Manet</creatorcontrib><creatorcontrib>Pérez Cruz, Ligia L.</creatorcontrib><creatorcontrib>Ran, Lihua</creatorcontrib><creatorcontrib>Riboulleau, Armelle</creatorcontrib><creatorcontrib>Sarao, John A.</creatorcontrib><creatorcontrib>Schubert, Florian</creatorcontrib><creatorcontrib>Singh, S. Khogenkumar</creatorcontrib><creatorcontrib>Stock, Joann M.</creatorcontrib><creatorcontrib>Toffin, Laurent M.A.A.</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Yamanaka, Toshiro</creatorcontrib><creatorcontrib>Zhuang, Guangchao</creatorcontrib><creatorcontrib>Expedition 385 Scientists</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Basin research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumann, Florian</au><au>Negrete‐Aranda, Raquel</au><au>Harris, Robert N.</au><au>Contreras, Juan</au><au>Galerne, Christophe Y.</au><au>Peña‐Salinas, Manet S.</au><au>Spelz, Ronald M.</au><au>Teske, Andreas</au><au>Lizarralde, Daniel</au><au>Höfig, Tobias W.</au><au>Teske, Andreas P.</au><au>Lizarralde, Daniel</au><au>Höfig, Tobias W.</au><au>Aiello, Ivano W.</au><au>Ash, Janine L.</au><au>Bojanova, Diana P.</au><au>Buatier, Martine</au><au>Edgcomb, Virginia P.</au><au>Galerne, Christophe Y.</au><au>Gontharet, Swanne</au><au>Heuer, Verena B.</au><au>Jiang, Shijun</au><au>Kars, Myriam A.C.</au><au>Kim, Ji‐Hoon</au><au>Koornneef, Louise M.T.</au><au>Marsaglia, Kathleen M.</au><au>Meyer, Nicolette R.</au><au>Morono, Yuki</au><au>Negrete‐Aranda, Raquel</au><au>Neumann, Florian</au><au>Pastor, Lucie C.</au><au>Peña‐Salinas, Manet</au><au>Pérez Cruz, Ligia L.</au><au>Ran, Lihua</au><au>Riboulleau, Armelle</au><au>Sarao, John A.</au><au>Schubert, Florian</au><au>Singh, S. Khogenkumar</au><au>Stock, Joann M.</au><au>Toffin, Laurent M.A.A.</au><au>Xie, Wei</au><au>Yamanaka, Toshiro</au><au>Zhuang, Guangchao</au><aucorp>Expedition 385 Scientists</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport</atitle><jtitle>Basin research</jtitle><date>2023-08</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1308</spage><epage>1328</epage><pages>1308-1328</pages><issn>0950-091X</issn><eissn>1365-2117</eissn><abstract>Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m2 in the basin and 257–1003 mW/m2 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages &gt;0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 103 yr), the thermal relaxation time of sills (ca. 104 yr), the characteristic cooling time of the sediments (ca. 105 yr), and the cooling of the entire crust at geologic timescales. Heat flow estimated during the IODP Expedition 385 into the Guaymas Basin show that values corrected for sedimentation are between 119 and 1003 mW/m2. Heat is dissipated by conduction for plate ages greater than 0.2 Ma. Off‐axis sill intrusion is being cooled down by hydrothermal circulation.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/bre.12755</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8016-1167</orcidid><orcidid>https://orcid.org/0000-0002-6807-6904</orcidid><orcidid>https://orcid.org/0000-0002-1856-116X</orcidid><orcidid>https://orcid.org/0000-0002-4984-1412</orcidid><orcidid>https://orcid.org/0000-0002-9666-5087</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid><orcidid>https://orcid.org/0000-0002-0409-4337</orcidid><orcidid>https://orcid.org/0000-0002-6282-8415</orcidid><orcidid>https://orcid.org/0000-0003-4062-3942</orcidid><orcidid>https://orcid.org/0000-0003-4816-7865</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-4536-3158</orcidid><orcidid>https://orcid.org/0000-0002-9561-355X</orcidid><orcidid>https://orcid.org/0000-0001-6152-6039</orcidid><orcidid>https://orcid.org/0000-0002-5835-0455</orcidid><orcidid>https://orcid.org/0000-0002-9254-4528</orcidid><orcidid>https://orcid.org/0000-0003-3049-4374</orcidid><orcidid>https://orcid.org/0000-0003-3669-5425</orcidid><orcidid>https://orcid.org/0000-0002-2717-8330</orcidid><orcidid>https://orcid.org/0000-0001-6805-381X</orcidid><orcidid>https://orcid.org/0000-0001-5436-1117</orcidid><orcidid>https://orcid.org/0000-0002-1618-3978</orcidid><orcidid>https://orcid.org/0000-0001-6259-7912</orcidid><orcidid>https://orcid.org/0000-0003-2430-3869</orcidid><orcidid>https://orcid.org/0000-0003-3863-5127</orcidid><orcidid>https://orcid.org/0000-0001-9696-205X</orcidid><orcidid>https://orcid.org/0000-0001-7787-6682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-091X
ispartof Basin research, 2023-08, Vol.35 (4), p.1308-1328
issn 0950-091X
1365-2117
language eng
recordid cdi_hal_primary_oai_HAL_hal_04000088v1
source Wiley Online Library Journals Frontfile Complete
subjects Advection
Biological evolution
Conduction
Conduction cooling
Cooling
Drilling
Environmental Sciences
Evolution
Expeditions
Fluids
Guyamas Basin
Heat Flow
Heat Transfer
Heat transmission
Heat transport
Hydrothermal flow
IODP Expedition 385
Lava
Magma
Plates (tectonics)
Relaxation time
Sediment
Sedimentation
Sedimentation & deposition
Sedimentation rates
Sediments
Sills
Tectonics
Thermal analysis
Thermal relaxation
title Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20flow%20and%20thermal%20regime%20in%20the%20Guaymas%20Basin,%20Gulf%20of%20California:%20Estimates%20of%20conductive%20and%20advective%20heat%20transport&rft.jtitle=Basin%20research&rft.au=Neumann,%20Florian&rft.aucorp=Expedition%20385%20Scientists&rft.date=2023-08&rft.volume=35&rft.issue=4&rft.spage=1308&rft.epage=1328&rft.pages=1308-1328&rft.issn=0950-091X&rft.eissn=1365-2117&rft_id=info:doi/10.1111/bre.12755&rft_dat=%3Cproquest_hal_p%3E2838211743%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838211743&rft_id=info:pmid/&rfr_iscdi=true