Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants

The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy population...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation. Genomic and precision medicine 2021-08, Vol.14 (4), p.e003289-e003289
Hauptverfasser: Kozek, Krystian, Wada, Yuko, Sala, Luca, Denjoy, Isabelle, Egly, Christian, O’Neill, Matthew J., Aiba, Takeshi, Shimizu, Wataru, Makita, Naomasa, Ishikawa, Taisuke, Crotti, Lia, Spazzolini, Carla, Kotta, Maria-Christina, Dagradi, Federica, Castelletti, Silvia, Pedrazzini, Matteo, Gnecchi, Massimiliano, Leenhardt, Antoine, Salem, Joe-Elie, Ohno, Seiko, Zuo, Yi, Glazer, Andrew M., Mosley, Jonathan D., Roden, Dan M., Knollmann, Bjorn C., Blume, Jeffrey D., Extramiana, Fabrice, Schwartz, Peter J., Horie, Minoru, Kroncke, Brett M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e003289
container_issue 4
container_start_page e003289
container_title Circulation. Genomic and precision medicine
container_volume 14
creator Kozek, Krystian
Wada, Yuko
Sala, Luca
Denjoy, Isabelle
Egly, Christian
O’Neill, Matthew J.
Aiba, Takeshi
Shimizu, Wataru
Makita, Naomasa
Ishikawa, Taisuke
Crotti, Lia
Spazzolini, Carla
Kotta, Maria-Christina
Dagradi, Federica
Castelletti, Silvia
Pedrazzini, Matteo
Gnecchi, Massimiliano
Leenhardt, Antoine
Salem, Joe-Elie
Ohno, Seiko
Zuo, Yi
Glazer, Andrew M.
Mosley, Jonathan D.
Roden, Dan M.
Knollmann, Bjorn C.
Blume, Jeffrey D.
Extramiana, Fabrice
Schwartz, Peter J.
Horie, Minoru
Kroncke, Brett M.
description The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene was diagnostically predictive for the autosomal dominant long QT syndrome. We estimated the probability of a long QT diagnosis given the presence of each variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.
doi_str_mv 10.1161/CIRCGEN.120.003289
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03999440v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555346155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4260-140f76483e9b441d7a3d498d49fb3e2aa180d36648d5526a373633b2f1c7f65b3</originalsourceid><addsrcrecordid>eNpNkVtLwzAYhoMoKtM_4IXkUi86vxyatpdSpxOHZwWvQrqmLto1mmTK_r0ZneJFDoTne-HNg9ABgSEhgpyUl_flxeh6SCgMARjNiw20S9OMJzkD2Px330H73r8BACmKQlCxjXYYZ1BwyHbRy8gHM1fBdK84zDS-tT4E7QO-dbZSlWlNWGLb4ImNwN0jflh2tbNzjc-Meu2sNx431uF75TS-Kq_HFD8rZ1QX_B7aalTr9f76HKCn89FjOU4mNxeX5ekkmXIqICEcmkzwnOmi4pzUmWI1L_K4moppqhTJoWYiEnWaUqFYxgRjFW3INGtEWrEBOu5zZ6qVHy6WcUtplZHj04lcvQGLvTmHLxLZo579cPZzEWvKufFT3baq03bhJU3TlHFB4j5AtEenznrvdPOXTUCuDMi1ARkNyN5AHDpc5y-qua7_Rn7_OwK8B75tG7Tz7-3iWzs506oNMwkUUoAsSyhQAnlUlqy0AfsBJESOEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555346155</pqid></control><display><type>article</type><title>Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Alma/SFX Local Collection</source><creator>Kozek, Krystian ; Wada, Yuko ; Sala, Luca ; Denjoy, Isabelle ; Egly, Christian ; O’Neill, Matthew J. ; Aiba, Takeshi ; Shimizu, Wataru ; Makita, Naomasa ; Ishikawa, Taisuke ; Crotti, Lia ; Spazzolini, Carla ; Kotta, Maria-Christina ; Dagradi, Federica ; Castelletti, Silvia ; Pedrazzini, Matteo ; Gnecchi, Massimiliano ; Leenhardt, Antoine ; Salem, Joe-Elie ; Ohno, Seiko ; Zuo, Yi ; Glazer, Andrew M. ; Mosley, Jonathan D. ; Roden, Dan M. ; Knollmann, Bjorn C. ; Blume, Jeffrey D. ; Extramiana, Fabrice ; Schwartz, Peter J. ; Horie, Minoru ; Kroncke, Brett M.</creator><creatorcontrib>Kozek, Krystian ; Wada, Yuko ; Sala, Luca ; Denjoy, Isabelle ; Egly, Christian ; O’Neill, Matthew J. ; Aiba, Takeshi ; Shimizu, Wataru ; Makita, Naomasa ; Ishikawa, Taisuke ; Crotti, Lia ; Spazzolini, Carla ; Kotta, Maria-Christina ; Dagradi, Federica ; Castelletti, Silvia ; Pedrazzini, Matteo ; Gnecchi, Massimiliano ; Leenhardt, Antoine ; Salem, Joe-Elie ; Ohno, Seiko ; Zuo, Yi ; Glazer, Andrew M. ; Mosley, Jonathan D. ; Roden, Dan M. ; Knollmann, Bjorn C. ; Blume, Jeffrey D. ; Extramiana, Fabrice ; Schwartz, Peter J. ; Horie, Minoru ; Kroncke, Brett M.</creatorcontrib><description>The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene was diagnostically predictive for the autosomal dominant long QT syndrome. We estimated the probability of a long QT diagnosis given the presence of each variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.</description><identifier>ISSN: 2574-8300</identifier><identifier>EISSN: 2574-8300</identifier><identifier>DOI: 10.1161/CIRCGEN.120.003289</identifier><identifier>PMID: 34309407</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>ERG1 Potassium Channel ; Heterozygote ; Humans ; INDEL Mutation ; Life Sciences ; Long QT Syndrome - diagnosis ; Long QT Syndrome - genetics ; Mutation, Missense</subject><ispartof>Circulation. Genomic and precision medicine, 2021-08, Vol.14 (4), p.e003289-e003289</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4260-140f76483e9b441d7a3d498d49fb3e2aa180d36648d5526a373633b2f1c7f65b3</citedby><cites>FETCH-LOGICAL-c4260-140f76483e9b441d7a3d498d49fb3e2aa180d36648d5526a373633b2f1c7f65b3</cites><orcidid>0000-0003-4956-9735 ; 0000-0001-8533-8040 ; 0000-0002-4129-6632 ; 0000-0001-7435-4328 ; 0000-0002-6951-9404 ; 0000-0002-3938-4713 ; 0000-0002-6643-8326 ; 0000-0001-6421-2887 ; 0000-0003-1209-0157 ; 0000-0001-8123-4842 ; 0000-0001-6215-0803 ; 0000-0001-7368-4528 ; 0000-0002-0675-4845 ; 0000-0002-1786-9461 ; 0000-0003-2014-7950 ; 0000-0002-0331-3307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3673,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34309407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03999440$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozek, Krystian</creatorcontrib><creatorcontrib>Wada, Yuko</creatorcontrib><creatorcontrib>Sala, Luca</creatorcontrib><creatorcontrib>Denjoy, Isabelle</creatorcontrib><creatorcontrib>Egly, Christian</creatorcontrib><creatorcontrib>O’Neill, Matthew J.</creatorcontrib><creatorcontrib>Aiba, Takeshi</creatorcontrib><creatorcontrib>Shimizu, Wataru</creatorcontrib><creatorcontrib>Makita, Naomasa</creatorcontrib><creatorcontrib>Ishikawa, Taisuke</creatorcontrib><creatorcontrib>Crotti, Lia</creatorcontrib><creatorcontrib>Spazzolini, Carla</creatorcontrib><creatorcontrib>Kotta, Maria-Christina</creatorcontrib><creatorcontrib>Dagradi, Federica</creatorcontrib><creatorcontrib>Castelletti, Silvia</creatorcontrib><creatorcontrib>Pedrazzini, Matteo</creatorcontrib><creatorcontrib>Gnecchi, Massimiliano</creatorcontrib><creatorcontrib>Leenhardt, Antoine</creatorcontrib><creatorcontrib>Salem, Joe-Elie</creatorcontrib><creatorcontrib>Ohno, Seiko</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Glazer, Andrew M.</creatorcontrib><creatorcontrib>Mosley, Jonathan D.</creatorcontrib><creatorcontrib>Roden, Dan M.</creatorcontrib><creatorcontrib>Knollmann, Bjorn C.</creatorcontrib><creatorcontrib>Blume, Jeffrey D.</creatorcontrib><creatorcontrib>Extramiana, Fabrice</creatorcontrib><creatorcontrib>Schwartz, Peter J.</creatorcontrib><creatorcontrib>Horie, Minoru</creatorcontrib><creatorcontrib>Kroncke, Brett M.</creatorcontrib><title>Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants</title><title>Circulation. Genomic and precision medicine</title><addtitle>Circ Genom Precis Med</addtitle><description>The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene was diagnostically predictive for the autosomal dominant long QT syndrome. We estimated the probability of a long QT diagnosis given the presence of each variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.</description><subject>ERG1 Potassium Channel</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>INDEL Mutation</subject><subject>Life Sciences</subject><subject>Long QT Syndrome - diagnosis</subject><subject>Long QT Syndrome - genetics</subject><subject>Mutation, Missense</subject><issn>2574-8300</issn><issn>2574-8300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkVtLwzAYhoMoKtM_4IXkUi86vxyatpdSpxOHZwWvQrqmLto1mmTK_r0ZneJFDoTne-HNg9ABgSEhgpyUl_flxeh6SCgMARjNiw20S9OMJzkD2Px330H73r8BACmKQlCxjXYYZ1BwyHbRy8gHM1fBdK84zDS-tT4E7QO-dbZSlWlNWGLb4ImNwN0jflh2tbNzjc-Meu2sNx431uF75TS-Kq_HFD8rZ1QX_B7aalTr9f76HKCn89FjOU4mNxeX5ekkmXIqICEcmkzwnOmi4pzUmWI1L_K4moppqhTJoWYiEnWaUqFYxgRjFW3INGtEWrEBOu5zZ6qVHy6WcUtplZHj04lcvQGLvTmHLxLZo579cPZzEWvKufFT3baq03bhJU3TlHFB4j5AtEenznrvdPOXTUCuDMi1ARkNyN5AHDpc5y-qua7_Rn7_OwK8B75tG7Tz7-3iWzs506oNMwkUUoAsSyhQAnlUlqy0AfsBJESOEw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kozek, Krystian</creator><creator>Wada, Yuko</creator><creator>Sala, Luca</creator><creator>Denjoy, Isabelle</creator><creator>Egly, Christian</creator><creator>O’Neill, Matthew J.</creator><creator>Aiba, Takeshi</creator><creator>Shimizu, Wataru</creator><creator>Makita, Naomasa</creator><creator>Ishikawa, Taisuke</creator><creator>Crotti, Lia</creator><creator>Spazzolini, Carla</creator><creator>Kotta, Maria-Christina</creator><creator>Dagradi, Federica</creator><creator>Castelletti, Silvia</creator><creator>Pedrazzini, Matteo</creator><creator>Gnecchi, Massimiliano</creator><creator>Leenhardt, Antoine</creator><creator>Salem, Joe-Elie</creator><creator>Ohno, Seiko</creator><creator>Zuo, Yi</creator><creator>Glazer, Andrew M.</creator><creator>Mosley, Jonathan D.</creator><creator>Roden, Dan M.</creator><creator>Knollmann, Bjorn C.</creator><creator>Blume, Jeffrey D.</creator><creator>Extramiana, Fabrice</creator><creator>Schwartz, Peter J.</creator><creator>Horie, Minoru</creator><creator>Kroncke, Brett M.</creator><general>Lippincott Williams &amp; Wilkins</general><general>American Heart Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4956-9735</orcidid><orcidid>https://orcid.org/0000-0001-8533-8040</orcidid><orcidid>https://orcid.org/0000-0002-4129-6632</orcidid><orcidid>https://orcid.org/0000-0001-7435-4328</orcidid><orcidid>https://orcid.org/0000-0002-6951-9404</orcidid><orcidid>https://orcid.org/0000-0002-3938-4713</orcidid><orcidid>https://orcid.org/0000-0002-6643-8326</orcidid><orcidid>https://orcid.org/0000-0001-6421-2887</orcidid><orcidid>https://orcid.org/0000-0003-1209-0157</orcidid><orcidid>https://orcid.org/0000-0001-8123-4842</orcidid><orcidid>https://orcid.org/0000-0001-6215-0803</orcidid><orcidid>https://orcid.org/0000-0001-7368-4528</orcidid><orcidid>https://orcid.org/0000-0002-0675-4845</orcidid><orcidid>https://orcid.org/0000-0002-1786-9461</orcidid><orcidid>https://orcid.org/0000-0003-2014-7950</orcidid><orcidid>https://orcid.org/0000-0002-0331-3307</orcidid></search><sort><creationdate>20210801</creationdate><title>Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants</title><author>Kozek, Krystian ; Wada, Yuko ; Sala, Luca ; Denjoy, Isabelle ; Egly, Christian ; O’Neill, Matthew J. ; Aiba, Takeshi ; Shimizu, Wataru ; Makita, Naomasa ; Ishikawa, Taisuke ; Crotti, Lia ; Spazzolini, Carla ; Kotta, Maria-Christina ; Dagradi, Federica ; Castelletti, Silvia ; Pedrazzini, Matteo ; Gnecchi, Massimiliano ; Leenhardt, Antoine ; Salem, Joe-Elie ; Ohno, Seiko ; Zuo, Yi ; Glazer, Andrew M. ; Mosley, Jonathan D. ; Roden, Dan M. ; Knollmann, Bjorn C. ; Blume, Jeffrey D. ; Extramiana, Fabrice ; Schwartz, Peter J. ; Horie, Minoru ; Kroncke, Brett M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4260-140f76483e9b441d7a3d498d49fb3e2aa180d36648d5526a373633b2f1c7f65b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ERG1 Potassium Channel</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>INDEL Mutation</topic><topic>Life Sciences</topic><topic>Long QT Syndrome - diagnosis</topic><topic>Long QT Syndrome - genetics</topic><topic>Mutation, Missense</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozek, Krystian</creatorcontrib><creatorcontrib>Wada, Yuko</creatorcontrib><creatorcontrib>Sala, Luca</creatorcontrib><creatorcontrib>Denjoy, Isabelle</creatorcontrib><creatorcontrib>Egly, Christian</creatorcontrib><creatorcontrib>O’Neill, Matthew J.</creatorcontrib><creatorcontrib>Aiba, Takeshi</creatorcontrib><creatorcontrib>Shimizu, Wataru</creatorcontrib><creatorcontrib>Makita, Naomasa</creatorcontrib><creatorcontrib>Ishikawa, Taisuke</creatorcontrib><creatorcontrib>Crotti, Lia</creatorcontrib><creatorcontrib>Spazzolini, Carla</creatorcontrib><creatorcontrib>Kotta, Maria-Christina</creatorcontrib><creatorcontrib>Dagradi, Federica</creatorcontrib><creatorcontrib>Castelletti, Silvia</creatorcontrib><creatorcontrib>Pedrazzini, Matteo</creatorcontrib><creatorcontrib>Gnecchi, Massimiliano</creatorcontrib><creatorcontrib>Leenhardt, Antoine</creatorcontrib><creatorcontrib>Salem, Joe-Elie</creatorcontrib><creatorcontrib>Ohno, Seiko</creatorcontrib><creatorcontrib>Zuo, Yi</creatorcontrib><creatorcontrib>Glazer, Andrew M.</creatorcontrib><creatorcontrib>Mosley, Jonathan D.</creatorcontrib><creatorcontrib>Roden, Dan M.</creatorcontrib><creatorcontrib>Knollmann, Bjorn C.</creatorcontrib><creatorcontrib>Blume, Jeffrey D.</creatorcontrib><creatorcontrib>Extramiana, Fabrice</creatorcontrib><creatorcontrib>Schwartz, Peter J.</creatorcontrib><creatorcontrib>Horie, Minoru</creatorcontrib><creatorcontrib>Kroncke, Brett M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Circulation. Genomic and precision medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozek, Krystian</au><au>Wada, Yuko</au><au>Sala, Luca</au><au>Denjoy, Isabelle</au><au>Egly, Christian</au><au>O’Neill, Matthew J.</au><au>Aiba, Takeshi</au><au>Shimizu, Wataru</au><au>Makita, Naomasa</au><au>Ishikawa, Taisuke</au><au>Crotti, Lia</au><au>Spazzolini, Carla</au><au>Kotta, Maria-Christina</au><au>Dagradi, Federica</au><au>Castelletti, Silvia</au><au>Pedrazzini, Matteo</au><au>Gnecchi, Massimiliano</au><au>Leenhardt, Antoine</au><au>Salem, Joe-Elie</au><au>Ohno, Seiko</au><au>Zuo, Yi</au><au>Glazer, Andrew M.</au><au>Mosley, Jonathan D.</au><au>Roden, Dan M.</au><au>Knollmann, Bjorn C.</au><au>Blume, Jeffrey D.</au><au>Extramiana, Fabrice</au><au>Schwartz, Peter J.</au><au>Horie, Minoru</au><au>Kroncke, Brett M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants</atitle><jtitle>Circulation. Genomic and precision medicine</jtitle><addtitle>Circ Genom Precis Med</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>14</volume><issue>4</issue><spage>e003289</spage><epage>e003289</epage><pages>e003289-e003289</pages><issn>2574-8300</issn><eissn>2574-8300</eissn><abstract>The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene was diagnostically predictive for the autosomal dominant long QT syndrome. We estimated the probability of a long QT diagnosis given the presence of each variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>34309407</pmid><doi>10.1161/CIRCGEN.120.003289</doi><orcidid>https://orcid.org/0000-0003-4956-9735</orcidid><orcidid>https://orcid.org/0000-0001-8533-8040</orcidid><orcidid>https://orcid.org/0000-0002-4129-6632</orcidid><orcidid>https://orcid.org/0000-0001-7435-4328</orcidid><orcidid>https://orcid.org/0000-0002-6951-9404</orcidid><orcidid>https://orcid.org/0000-0002-3938-4713</orcidid><orcidid>https://orcid.org/0000-0002-6643-8326</orcidid><orcidid>https://orcid.org/0000-0001-6421-2887</orcidid><orcidid>https://orcid.org/0000-0003-1209-0157</orcidid><orcidid>https://orcid.org/0000-0001-8123-4842</orcidid><orcidid>https://orcid.org/0000-0001-6215-0803</orcidid><orcidid>https://orcid.org/0000-0001-7368-4528</orcidid><orcidid>https://orcid.org/0000-0002-0675-4845</orcidid><orcidid>https://orcid.org/0000-0002-1786-9461</orcidid><orcidid>https://orcid.org/0000-0003-2014-7950</orcidid><orcidid>https://orcid.org/0000-0002-0331-3307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-8300
ispartof Circulation. Genomic and precision medicine, 2021-08, Vol.14 (4), p.e003289-e003289
issn 2574-8300
2574-8300
language eng
recordid cdi_hal_primary_oai_HAL_hal_03999440v1
source MEDLINE; American Heart Association Journals; Alma/SFX Local Collection
subjects ERG1 Potassium Channel
Heterozygote
Humans
INDEL Mutation
Life Sciences
Long QT Syndrome - diagnosis
Long QT Syndrome - genetics
Mutation, Missense
title Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Posttest%20Probability%20of%20Long%20QT%20Syndrome%20Diagnosis%20for%20Rare%20KCNH2%20Variants&rft.jtitle=Circulation.%20Genomic%20and%20precision%20medicine&rft.au=Kozek,%20Krystian&rft.date=2021-08-01&rft.volume=14&rft.issue=4&rft.spage=e003289&rft.epage=e003289&rft.pages=e003289-e003289&rft.issn=2574-8300&rft.eissn=2574-8300&rft_id=info:doi/10.1161/CIRCGEN.120.003289&rft_dat=%3Cproquest_hal_p%3E2555346155%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555346155&rft_id=info:pmid/34309407&rfr_iscdi=true