Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20)

Quantitative estimation of seismic risk over a region requires both an underlying probabilistic seismic hazard model and a means to characterise shallow site response over a large scale. The 2020 European Seismic Risk Model (ESRM20) builds on the 2020 European Seismic Hazard Model (ESHM20), requirin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2023, Vol.21 (2), p.665-714
Hauptverfasser: Weatherill, Graeme, Crowley, Helen, Roullé, Agathe, Tourlière, Bruno, Lemoine, Anne, Gracianne, Cécile, Kotha, Sreeram Reddy, Cotton, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue 2
container_start_page 665
container_title Bulletin of earthquake engineering
container_volume 21
creator Weatherill, Graeme
Crowley, Helen
Roullé, Agathe
Tourlière, Bruno
Lemoine, Anne
Gracianne, Cécile
Kotha, Sreeram Reddy
Cotton, Fabrice
description Quantitative estimation of seismic risk over a region requires both an underlying probabilistic seismic hazard model and a means to characterise shallow site response over a large scale. The 2020 European Seismic Risk Model (ESRM20) builds on the 2020 European Seismic Hazard Model (ESHM20), requiring additional information to firstly parameterise the local site condition across all of Europe, and subsequently determine its influence on the prediction of seismic ground motion. Initially, a harmonised digital geological database for Europe is compiled, alongside a model of topographic/bathymetric elevation and a database of 30 m averaged shearwave velocity measurements ( V S 30 ), in order to produce separate 30 arc-second maps of inferred V S 30 based on topography and on geology. We then capitalise on a large database of seismic recording stations in Europe for which site-to-site ground motion residuals ( δ S 2 S S ) have been determined with respect to the shallow crustal ground motion model used in the ESHM20. These residuals allow us to incorporate site amplification functions into the European GMM calibrated upon either observed or inferred V S 30 , or on the European geology and topography models. We present the resulting pan-European seismic site amplification model and assess its impact on seismic hazard and risk compared against other approaches. The new site amplification model fulfils the requirements of the ESRM20 and, providing uncertainty is fully propagated, yields estimates of seismic hazard and risk at a large space scale that may be comparable to other methods often applied at local/urban scale where better-constrained site information is available.
doi_str_mv 10.1007/s10518-022-01526-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03993964v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769869628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c540121ce251d9fa1c17b8c9d6e94cea851f274e2c364e17512019e8adc43fda3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhosoqKsv4CngRQ_VmbRJmuMiqyusCKuC4CHEdLpWu82adAXf3roVvXmaYfj-H-ZLkiOEMwRQ5xFBYJEC5ymg4DIVW8keCpWlmAu5vdkhVRIfd5P9GF8BuFAa9pKnG19S09TtgsW6IxYornwbidmu3xe1b23DorMNscoH1r0Q48CBTdbBr8i27I7quKwdm9fxjW3K2Mnkbn7D4fQg2alsE-nwZ46Sh8vJ_cU0nd1eXV-MZ6nLtOpSJ3JAjo64wFJXFh2q58LpUpLOHdlCYMVVTtxlMidUAjmgpsKWLs-q0maj5HTofbGNWYV6acOn8bY20_HMfN8g0zrTMv_Anj0e2FXw72uKnXn169A_GQ1XUhdSS170FB8oF3yMgarfWgTzLdwMwk0v3GyEG9GHsiEUe7hdUPir_if1Ba5ugEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769869628</pqid></control><display><type>article</type><title>Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Weatherill, Graeme ; Crowley, Helen ; Roullé, Agathe ; Tourlière, Bruno ; Lemoine, Anne ; Gracianne, Cécile ; Kotha, Sreeram Reddy ; Cotton, Fabrice</creator><creatorcontrib>Weatherill, Graeme ; Crowley, Helen ; Roullé, Agathe ; Tourlière, Bruno ; Lemoine, Anne ; Gracianne, Cécile ; Kotha, Sreeram Reddy ; Cotton, Fabrice</creatorcontrib><description>Quantitative estimation of seismic risk over a region requires both an underlying probabilistic seismic hazard model and a means to characterise shallow site response over a large scale. The 2020 European Seismic Risk Model (ESRM20) builds on the 2020 European Seismic Hazard Model (ESHM20), requiring additional information to firstly parameterise the local site condition across all of Europe, and subsequently determine its influence on the prediction of seismic ground motion. Initially, a harmonised digital geological database for Europe is compiled, alongside a model of topographic/bathymetric elevation and a database of 30 m averaged shearwave velocity measurements ( V S 30 ), in order to produce separate 30 arc-second maps of inferred V S 30 based on topography and on geology. We then capitalise on a large database of seismic recording stations in Europe for which site-to-site ground motion residuals ( δ S 2 S S ) have been determined with respect to the shallow crustal ground motion model used in the ESHM20. These residuals allow us to incorporate site amplification functions into the European GMM calibrated upon either observed or inferred V S 30 , or on the European geology and topography models. We present the resulting pan-European seismic site amplification model and assess its impact on seismic hazard and risk compared against other approaches. The new site amplification model fulfils the requirements of the ESRM20 and, providing uncertainty is fully propagated, yields estimates of seismic hazard and risk at a large space scale that may be comparable to other methods often applied at local/urban scale where better-constrained site information is available.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-022-01526-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplification ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Environmental Engineering/Biotechnology ; Geological data ; Geological hazards ; Geology ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrogeology ; Modelling ; Movement ; Original Article ; Sciences of the Universe ; Seismic activity ; Seismic hazard ; Structural Geology ; Topography</subject><ispartof>Bulletin of earthquake engineering, 2023, Vol.21 (2), p.665-714</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c540121ce251d9fa1c17b8c9d6e94cea851f274e2c364e17512019e8adc43fda3</citedby><cites>FETCH-LOGICAL-c397t-c540121ce251d9fa1c17b8c9d6e94cea851f274e2c364e17512019e8adc43fda3</cites><orcidid>0000-0001-9347-2282 ; 0000-0003-4232-5359 ; 0000-0002-4874-3730 ; 0000-0002-5581-6643 ; 0000-0001-6725-6690 ; 0000-0002-2545-0193 ; 0000-0002-9242-3996 ; 0000-0002-1216-1245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-022-01526-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-022-01526-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03993964$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weatherill, Graeme</creatorcontrib><creatorcontrib>Crowley, Helen</creatorcontrib><creatorcontrib>Roullé, Agathe</creatorcontrib><creatorcontrib>Tourlière, Bruno</creatorcontrib><creatorcontrib>Lemoine, Anne</creatorcontrib><creatorcontrib>Gracianne, Cécile</creatorcontrib><creatorcontrib>Kotha, Sreeram Reddy</creatorcontrib><creatorcontrib>Cotton, Fabrice</creatorcontrib><title>Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20)</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>Quantitative estimation of seismic risk over a region requires both an underlying probabilistic seismic hazard model and a means to characterise shallow site response over a large scale. The 2020 European Seismic Risk Model (ESRM20) builds on the 2020 European Seismic Hazard Model (ESHM20), requiring additional information to firstly parameterise the local site condition across all of Europe, and subsequently determine its influence on the prediction of seismic ground motion. Initially, a harmonised digital geological database for Europe is compiled, alongside a model of topographic/bathymetric elevation and a database of 30 m averaged shearwave velocity measurements ( V S 30 ), in order to produce separate 30 arc-second maps of inferred V S 30 based on topography and on geology. We then capitalise on a large database of seismic recording stations in Europe for which site-to-site ground motion residuals ( δ S 2 S S ) have been determined with respect to the shallow crustal ground motion model used in the ESHM20. These residuals allow us to incorporate site amplification functions into the European GMM calibrated upon either observed or inferred V S 30 , or on the European geology and topography models. We present the resulting pan-European seismic site amplification model and assess its impact on seismic hazard and risk compared against other approaches. The new site amplification model fulfils the requirements of the ESRM20 and, providing uncertainty is fully propagated, yields estimates of seismic hazard and risk at a large space scale that may be comparable to other methods often applied at local/urban scale where better-constrained site information is available.</description><subject>Amplification</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Geological data</subject><subject>Geological hazards</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Modelling</subject><subject>Movement</subject><subject>Original Article</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismic hazard</subject><subject>Structural Geology</subject><subject>Topography</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMFKxDAQhosoqKsv4CngRQ_VmbRJmuMiqyusCKuC4CHEdLpWu82adAXf3roVvXmaYfj-H-ZLkiOEMwRQ5xFBYJEC5ymg4DIVW8keCpWlmAu5vdkhVRIfd5P9GF8BuFAa9pKnG19S09TtgsW6IxYornwbidmu3xe1b23DorMNscoH1r0Q48CBTdbBr8i27I7quKwdm9fxjW3K2Mnkbn7D4fQg2alsE-nwZ46Sh8vJ_cU0nd1eXV-MZ6nLtOpSJ3JAjo64wFJXFh2q58LpUpLOHdlCYMVVTtxlMidUAjmgpsKWLs-q0maj5HTofbGNWYV6acOn8bY20_HMfN8g0zrTMv_Anj0e2FXw72uKnXn169A_GQ1XUhdSS170FB8oF3yMgarfWgTzLdwMwk0v3GyEG9GHsiEUe7hdUPir_if1Ba5ugEw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Weatherill, Graeme</creator><creator>Crowley, Helen</creator><creator>Roullé, Agathe</creator><creator>Tourlière, Bruno</creator><creator>Lemoine, Anne</creator><creator>Gracianne, Cécile</creator><creator>Kotha, Sreeram Reddy</creator><creator>Cotton, Fabrice</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9347-2282</orcidid><orcidid>https://orcid.org/0000-0003-4232-5359</orcidid><orcidid>https://orcid.org/0000-0002-4874-3730</orcidid><orcidid>https://orcid.org/0000-0002-5581-6643</orcidid><orcidid>https://orcid.org/0000-0001-6725-6690</orcidid><orcidid>https://orcid.org/0000-0002-2545-0193</orcidid><orcidid>https://orcid.org/0000-0002-9242-3996</orcidid><orcidid>https://orcid.org/0000-0002-1216-1245</orcidid></search><sort><creationdate>2023</creationdate><title>Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20)</title><author>Weatherill, Graeme ; Crowley, Helen ; Roullé, Agathe ; Tourlière, Bruno ; Lemoine, Anne ; Gracianne, Cécile ; Kotha, Sreeram Reddy ; Cotton, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c540121ce251d9fa1c17b8c9d6e94cea851f274e2c364e17512019e8adc43fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Geological data</topic><topic>Geological hazards</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Modelling</topic><topic>Movement</topic><topic>Original Article</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismic hazard</topic><topic>Structural Geology</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weatherill, Graeme</creatorcontrib><creatorcontrib>Crowley, Helen</creatorcontrib><creatorcontrib>Roullé, Agathe</creatorcontrib><creatorcontrib>Tourlière, Bruno</creatorcontrib><creatorcontrib>Lemoine, Anne</creatorcontrib><creatorcontrib>Gracianne, Cécile</creatorcontrib><creatorcontrib>Kotha, Sreeram Reddy</creatorcontrib><creatorcontrib>Cotton, Fabrice</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weatherill, Graeme</au><au>Crowley, Helen</au><au>Roullé, Agathe</au><au>Tourlière, Bruno</au><au>Lemoine, Anne</au><au>Gracianne, Cécile</au><au>Kotha, Sreeram Reddy</au><au>Cotton, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20)</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2023</date><risdate>2023</risdate><volume>21</volume><issue>2</issue><spage>665</spage><epage>714</epage><pages>665-714</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>Quantitative estimation of seismic risk over a region requires both an underlying probabilistic seismic hazard model and a means to characterise shallow site response over a large scale. The 2020 European Seismic Risk Model (ESRM20) builds on the 2020 European Seismic Hazard Model (ESHM20), requiring additional information to firstly parameterise the local site condition across all of Europe, and subsequently determine its influence on the prediction of seismic ground motion. Initially, a harmonised digital geological database for Europe is compiled, alongside a model of topographic/bathymetric elevation and a database of 30 m averaged shearwave velocity measurements ( V S 30 ), in order to produce separate 30 arc-second maps of inferred V S 30 based on topography and on geology. We then capitalise on a large database of seismic recording stations in Europe for which site-to-site ground motion residuals ( δ S 2 S S ) have been determined with respect to the shallow crustal ground motion model used in the ESHM20. These residuals allow us to incorporate site amplification functions into the European GMM calibrated upon either observed or inferred V S 30 , or on the European geology and topography models. We present the resulting pan-European seismic site amplification model and assess its impact on seismic hazard and risk compared against other approaches. The new site amplification model fulfils the requirements of the ESRM20 and, providing uncertainty is fully propagated, yields estimates of seismic hazard and risk at a large space scale that may be comparable to other methods often applied at local/urban scale where better-constrained site information is available.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-022-01526-5</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0001-9347-2282</orcidid><orcidid>https://orcid.org/0000-0003-4232-5359</orcidid><orcidid>https://orcid.org/0000-0002-4874-3730</orcidid><orcidid>https://orcid.org/0000-0002-5581-6643</orcidid><orcidid>https://orcid.org/0000-0001-6725-6690</orcidid><orcidid>https://orcid.org/0000-0002-2545-0193</orcidid><orcidid>https://orcid.org/0000-0002-9242-3996</orcidid><orcidid>https://orcid.org/0000-0002-1216-1245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-761X
ispartof Bulletin of earthquake engineering, 2023, Vol.21 (2), p.665-714
issn 1570-761X
1573-1456
language eng
recordid cdi_hal_primary_oai_HAL_hal_03993964v1
source SpringerLink Journals - AutoHoldings
subjects Amplification
Civil Engineering
Earth and Environmental Science
Earth Sciences
Environmental Engineering/Biotechnology
Geological data
Geological hazards
Geology
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Modelling
Movement
Original Article
Sciences of the Universe
Seismic activity
Seismic hazard
Structural Geology
Topography
title Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20site%20response%20at%20regional%20scale%20for%20the%202020%20European%20Seismic%20Risk%20Model%20(ESRM20)&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Weatherill,%20Graeme&rft.date=2023&rft.volume=21&rft.issue=2&rft.spage=665&rft.epage=714&rft.pages=665-714&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-022-01526-5&rft_dat=%3Cproquest_hal_p%3E2769869628%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769869628&rft_id=info:pmid/&rfr_iscdi=true