Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation
This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity...
Gespeichert in:
Veröffentlicht in: | Stochastic processes and their applications 2025-03, Vol.181, p.104535, Article 104535 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!