Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation

This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2025-03, Vol.181, p.104535, Article 104535
1. Verfasser: Alfonsi, Aurélien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!