Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation

This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2025-03, Vol.181, p.104535, Article 104535
1. Verfasser: Alfonsi, Aurélien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104535
container_title Stochastic processes and their applications
container_volume 181
creator Alfonsi, Aurélien
description This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.
doi_str_mv 10.1016/j.spa.2024.104535
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03991952v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304414924002436</els_id><sourcerecordid>oai_HAL_hal_03991952v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-e02711df2c803edb907b428b7d0cafda44a2ff54fa121871c2de33b12cf203053</originalsourceid><addsrcrecordid>eNp9kM9OAjEQhxujiYg-gLdePSy23S6w8UQIignRg3_irSntLBSXdm3LBp7Bl7aA8ehpMvObbyb5ELqmpEcJ7d-ueqGRPUYYTz0v8uIEdehwUGaMlB-nqENywjNOeXmOLkJYEUIoY7SDvp-ctbCQ0bQm7nDjIYBvjV1g5Wzr6k00zuJP8Bbq0MOjpqmNkodhdPglOrWUIRqF310dwXuJJ1-bQx6wsVjVLoA-3IIt1m4tTQqk1TguwXgsm8a7rVkfiEt0Vsk6wNVv7aK3-8nreJrNnh8ex6NZpljRjxkQNqBUV0wNSQ56XpLBnLPhfKCJkpWWnEtWVQWvJGVJAVVMQ57PKVMVSxqKvItujneXshaNT9_9TjhpxHQ0E_sZycuSlgVradqlx13lXQgeqj-AErE3L1YimRd78-JoPjF3RyYpg9aAF0EZsAq08aCi0M78Q_8AzKCPsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation</title><source>Elsevier ScienceDirect Journals</source><creator>Alfonsi, Aurélien</creator><creatorcontrib>Alfonsi, Aurélien</creatorcontrib><description>This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.</description><identifier>ISSN: 0304-4149</identifier><identifier>EISSN: 1879-209X</identifier><identifier>DOI: 10.1016/j.spa.2024.104535</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Completely monotone kernels ; Hawkes processes with inhibition ; Mathematics ; Rough Heston model ; Stochastic Volterra Equations ; Volterra Equations</subject><ispartof>Stochastic processes and their applications, 2025-03, Vol.181, p.104535, Article 104535</ispartof><rights>2024 The Author</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-e02711df2c803edb907b428b7d0cafda44a2ff54fa121871c2de33b12cf203053</cites><orcidid>0000-0003-3816-6105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304414924002436$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://enpc.hal.science/hal-03991952$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alfonsi, Aurélien</creatorcontrib><title>Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation</title><title>Stochastic processes and their applications</title><description>This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.</description><subject>Completely monotone kernels</subject><subject>Hawkes processes with inhibition</subject><subject>Mathematics</subject><subject>Rough Heston model</subject><subject>Stochastic Volterra Equations</subject><subject>Volterra Equations</subject><issn>0304-4149</issn><issn>1879-209X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAjEQhxujiYg-gLdePSy23S6w8UQIignRg3_irSntLBSXdm3LBp7Bl7aA8ehpMvObbyb5ELqmpEcJ7d-ueqGRPUYYTz0v8uIEdehwUGaMlB-nqENywjNOeXmOLkJYEUIoY7SDvp-ctbCQ0bQm7nDjIYBvjV1g5Wzr6k00zuJP8Bbq0MOjpqmNkodhdPglOrWUIRqF310dwXuJJ1-bQx6wsVjVLoA-3IIt1m4tTQqk1TguwXgsm8a7rVkfiEt0Vsk6wNVv7aK3-8nreJrNnh8ex6NZpljRjxkQNqBUV0wNSQ56XpLBnLPhfKCJkpWWnEtWVQWvJGVJAVVMQ57PKVMVSxqKvItujneXshaNT9_9TjhpxHQ0E_sZycuSlgVradqlx13lXQgeqj-AErE3L1YimRd78-JoPjF3RyYpg9aAF0EZsAq08aCi0M78Q_8AzKCPsg</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Alfonsi, Aurélien</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3816-6105</orcidid></search><sort><creationdate>20250301</creationdate><title>Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation</title><author>Alfonsi, Aurélien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-e02711df2c803edb907b428b7d0cafda44a2ff54fa121871c2de33b12cf203053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Completely monotone kernels</topic><topic>Hawkes processes with inhibition</topic><topic>Mathematics</topic><topic>Rough Heston model</topic><topic>Stochastic Volterra Equations</topic><topic>Volterra Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfonsi, Aurélien</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Stochastic processes and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfonsi, Aurélien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation</atitle><jtitle>Stochastic processes and their applications</jtitle><date>2025-03-01</date><risdate>2025</risdate><volume>181</volume><spage>104535</spage><pages>104535-</pages><artnum>104535</artnum><issn>0304-4149</issn><eissn>1879-209X</eissn><abstract>This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.spa.2024.104535</doi><orcidid>https://orcid.org/0000-0003-3816-6105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4149
ispartof Stochastic processes and their applications, 2025-03, Vol.181, p.104535, Article 104535
issn 0304-4149
1879-209X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03991952v1
source Elsevier ScienceDirect Journals
subjects Completely monotone kernels
Hawkes processes with inhibition
Mathematics
Rough Heston model
Stochastic Volterra Equations
Volterra Equations
title Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonnegativity%20preserving%20convolution%20kernels.%20Application%20to%20Stochastic%20Volterra%20Equations%20in%20closed%20convex%20domains%20and%20their%20approximation&rft.jtitle=Stochastic%20processes%20and%20their%20applications&rft.au=Alfonsi,%20Aur%C3%A9lien&rft.date=2025-03-01&rft.volume=181&rft.spage=104535&rft.pages=104535-&rft.artnum=104535&rft.issn=0304-4149&rft.eissn=1879-209X&rft_id=info:doi/10.1016/j.spa.2024.104535&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03991952v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304414924002436&rfr_iscdi=true