Strong instrumental variables biased propensity scores in comparative effectiveness research: A case study in oncology

Some medications require specific medical procedures in the weeks before their start. Such procedures may meet the definition of instrumental variables (IVs). We examined how they may influence treatment effect estimation in propensity score (PS)-adjusted comparative studies, and how to remedy. Diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2023-03, Vol.155, p.31-38
Hauptverfasser: Thurin, Nicolas H., Jové, Jérémy, Lassalle, Régis, Rouyer, Magali, Lamarque, Stéphanie, Bosco-Levy, Pauline, Segalas, Corentin, Schneeweiss, Sebastian, Blin, Patrick, Droz-Perroteau, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 31
container_title Journal of clinical epidemiology
container_volume 155
creator Thurin, Nicolas H.
Jové, Jérémy
Lassalle, Régis
Rouyer, Magali
Lamarque, Stéphanie
Bosco-Levy, Pauline
Segalas, Corentin
Schneeweiss, Sebastian
Blin, Patrick
Droz-Perroteau, Cécile
description Some medications require specific medical procedures in the weeks before their start. Such procedures may meet the definition of instrumental variables (IVs). We examined how they may influence treatment effect estimation in propensity score (PS)-adjusted comparative studies, and how to remedy. Different covariate assessment periods (CAPs) did and did not include the month preceding treatment start were used to compute PS in the French claims database (Sytème National des Données de Santé-SNDS), and 1:1 match patients with metastatic castration resistant prostate cancer initiating abiraterone acetate or docetaxel. The 36-month survival was assessed. Among 1, 213 docetaxel and 2, 442 abiraterone initiators, the PS distribution resulting from the CAP [-12; 0 months] distinctly separated populations (c = 0.93; 273 matched pairs). The CAPs [-12;-1 months] identified 765 pairs (c = 0.81). Strong docetaxel treatment predictors during the month before treatment start were implantable delivery systems (1% vs. 59%), which fulfilled IV conditions. The 36-month survival was not meaningfully different under the [-12; 0 months] CAP but differed by 10% points (38% vs. 28%) after excluding month −1. In the setting of highly predictive pretreatment procedures, excluding the immediate pre-exposure time from the CAP will reduce the risk of including potential IVs in PS models and may reduce bias.
doi_str_mv 10.1016/j.jclinepi.2023.01.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03988528v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435623000021</els_id><sourcerecordid>2807367514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-2f5d6e8c8cde20d4a36909ed620f45dd41c7526decb9b51b1f8ba0101c102c943</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEokPhFSpLbGCR4dqJHYcVowpapJFYAGvLsW9aRxl7sJNI8_Z1NG0X3bCyZX_n3J9TFFcUthSo-DJsBzM6j0e3ZcCqLdAtAHtVbKhsZMlbRl8XG5AtL-uKi4viXUoDAG2g4W-Li0oI3vAWNsXye4rB3xHn0xTnA_pJj2TR0eluxEQ6pxNacozhiD656USSCTF_OE9MOBx11JNbkGDfo1lvHlMiGUAdzf1XsiMmG5A0zfa0aoI3YQx3p_fFm16PCT88npfF3x_f_1zflvtfNz-vd_vS1IxPJeu5FSiNNBYZ2FpXooUWrWDQ19zampqGM2HRdG3HaUd72WnICzIUmGnr6rL4fPa916M6RnfQ8aSCdup2t1frG1StlJzJhWb205nN0_6bMU3q4JLBcdQew5wUa4RkTNQUMvrxBTqEOfo8iWISmko0nK7FxZkyMaQUsX_ugIJaU1SDekpRrSkqoCqnmIVXj_Zzd0D7LHuKLQPfzgDm3S0Oo0rGoTdoXcw5KBvc_2o8ALBasp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807367514</pqid></control><display><type>article</type><title>Strong instrumental variables biased propensity scores in comparative effectiveness research: A case study in oncology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Thurin, Nicolas H. ; Jové, Jérémy ; Lassalle, Régis ; Rouyer, Magali ; Lamarque, Stéphanie ; Bosco-Levy, Pauline ; Segalas, Corentin ; Schneeweiss, Sebastian ; Blin, Patrick ; Droz-Perroteau, Cécile</creator><creatorcontrib>Thurin, Nicolas H. ; Jové, Jérémy ; Lassalle, Régis ; Rouyer, Magali ; Lamarque, Stéphanie ; Bosco-Levy, Pauline ; Segalas, Corentin ; Schneeweiss, Sebastian ; Blin, Patrick ; Droz-Perroteau, Cécile</creatorcontrib><description>Some medications require specific medical procedures in the weeks before their start. Such procedures may meet the definition of instrumental variables (IVs). We examined how they may influence treatment effect estimation in propensity score (PS)-adjusted comparative studies, and how to remedy. Different covariate assessment periods (CAPs) did and did not include the month preceding treatment start were used to compute PS in the French claims database (Sytème National des Données de Santé-SNDS), and 1:1 match patients with metastatic castration resistant prostate cancer initiating abiraterone acetate or docetaxel. The 36-month survival was assessed. Among 1, 213 docetaxel and 2, 442 abiraterone initiators, the PS distribution resulting from the CAP [-12; 0 months] distinctly separated populations (c = 0.93; 273 matched pairs). The CAPs [-12;-1 months] identified 765 pairs (c = 0.81). Strong docetaxel treatment predictors during the month before treatment start were implantable delivery systems (1% vs. 59%), which fulfilled IV conditions. The 36-month survival was not meaningfully different under the [-12; 0 months] CAP but differed by 10% points (38% vs. 28%) after excluding month −1. In the setting of highly predictive pretreatment procedures, excluding the immediate pre-exposure time from the CAP will reduce the risk of including potential IVs in PS models and may reduce bias.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2023.01.002</identifier><identifier>PMID: 36657590</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetic acid ; Algorithms ; Bias ; Cancer therapies ; Case reports ; Castration ; Chemotherapy ; Cohort analysis ; Comparative Effectiveness Research ; Comparative studies ; Construction ; Docetaxel - therapeutic use ; Epidemiology ; Estimates ; Feature selection ; Health care policy ; Hospitals ; Humans ; Instrumental variables ; Laboratories ; Life Sciences ; Male ; Matching ; Metastases ; Metastasis ; Patients ; Pharmaceutical sciences ; Pharmacology ; Pharmacy ; Probability ; Propensity Score ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - drug therapy ; Prostatic Neoplasms, Castration-Resistant - pathology ; Retrospective Studies ; Risk reduction ; Santé publique et épidémiologie ; SNDS ; Statistics ; Survival ; Taxoids - therapeutic use ; Treatment Outcome ; Variables</subject><ispartof>Journal of clinical epidemiology, 2023-03, Vol.155, p.31-38</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><rights>2023. Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-2f5d6e8c8cde20d4a36909ed620f45dd41c7526decb9b51b1f8ba0101c102c943</cites><orcidid>0000-0001-9763-5974 ; 0000-0003-2575-467X ; 0000-0001-6726-6215 ; 0000-0002-2560-4412 ; 0000-0003-4005-7928 ; 0000-0003-3589-0819 ; 0000-0002-6902-003X ; 0000-0002-7697-1167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0895435623000021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36657590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03988528$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thurin, Nicolas H.</creatorcontrib><creatorcontrib>Jové, Jérémy</creatorcontrib><creatorcontrib>Lassalle, Régis</creatorcontrib><creatorcontrib>Rouyer, Magali</creatorcontrib><creatorcontrib>Lamarque, Stéphanie</creatorcontrib><creatorcontrib>Bosco-Levy, Pauline</creatorcontrib><creatorcontrib>Segalas, Corentin</creatorcontrib><creatorcontrib>Schneeweiss, Sebastian</creatorcontrib><creatorcontrib>Blin, Patrick</creatorcontrib><creatorcontrib>Droz-Perroteau, Cécile</creatorcontrib><title>Strong instrumental variables biased propensity scores in comparative effectiveness research: A case study in oncology</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Some medications require specific medical procedures in the weeks before their start. Such procedures may meet the definition of instrumental variables (IVs). We examined how they may influence treatment effect estimation in propensity score (PS)-adjusted comparative studies, and how to remedy. Different covariate assessment periods (CAPs) did and did not include the month preceding treatment start were used to compute PS in the French claims database (Sytème National des Données de Santé-SNDS), and 1:1 match patients with metastatic castration resistant prostate cancer initiating abiraterone acetate or docetaxel. The 36-month survival was assessed. Among 1, 213 docetaxel and 2, 442 abiraterone initiators, the PS distribution resulting from the CAP [-12; 0 months] distinctly separated populations (c = 0.93; 273 matched pairs). The CAPs [-12;-1 months] identified 765 pairs (c = 0.81). Strong docetaxel treatment predictors during the month before treatment start were implantable delivery systems (1% vs. 59%), which fulfilled IV conditions. The 36-month survival was not meaningfully different under the [-12; 0 months] CAP but differed by 10% points (38% vs. 28%) after excluding month −1. In the setting of highly predictive pretreatment procedures, excluding the immediate pre-exposure time from the CAP will reduce the risk of including potential IVs in PS models and may reduce bias.</description><subject>Acetic acid</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Cancer therapies</subject><subject>Case reports</subject><subject>Castration</subject><subject>Chemotherapy</subject><subject>Cohort analysis</subject><subject>Comparative Effectiveness Research</subject><subject>Comparative studies</subject><subject>Construction</subject><subject>Docetaxel - therapeutic use</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Feature selection</subject><subject>Health care policy</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Instrumental variables</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Matching</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Patients</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Pharmacy</subject><subject>Probability</subject><subject>Propensity Score</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - drug therapy</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Retrospective Studies</subject><subject>Risk reduction</subject><subject>Santé publique et épidémiologie</subject><subject>SNDS</subject><subject>Statistics</subject><subject>Survival</subject><subject>Taxoids - therapeutic use</subject><subject>Treatment Outcome</subject><subject>Variables</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1u1DAUhSMEokPhFSpLbGCR4dqJHYcVowpapJFYAGvLsW9aRxl7sJNI8_Z1NG0X3bCyZX_n3J9TFFcUthSo-DJsBzM6j0e3ZcCqLdAtAHtVbKhsZMlbRl8XG5AtL-uKi4viXUoDAG2g4W-Li0oI3vAWNsXye4rB3xHn0xTnA_pJj2TR0eluxEQ6pxNacozhiD656USSCTF_OE9MOBx11JNbkGDfo1lvHlMiGUAdzf1XsiMmG5A0zfa0aoI3YQx3p_fFm16PCT88npfF3x_f_1zflvtfNz-vd_vS1IxPJeu5FSiNNBYZ2FpXooUWrWDQ19zampqGM2HRdG3HaUd72WnICzIUmGnr6rL4fPa916M6RnfQ8aSCdup2t1frG1StlJzJhWb205nN0_6bMU3q4JLBcdQew5wUa4RkTNQUMvrxBTqEOfo8iWISmko0nK7FxZkyMaQUsX_ugIJaU1SDekpRrSkqoCqnmIVXj_Zzd0D7LHuKLQPfzgDm3S0Oo0rGoTdoXcw5KBvc_2o8ALBasp8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Thurin, Nicolas H.</creator><creator>Jové, Jérémy</creator><creator>Lassalle, Régis</creator><creator>Rouyer, Magali</creator><creator>Lamarque, Stéphanie</creator><creator>Bosco-Levy, Pauline</creator><creator>Segalas, Corentin</creator><creator>Schneeweiss, Sebastian</creator><creator>Blin, Patrick</creator><creator>Droz-Perroteau, Cécile</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9763-5974</orcidid><orcidid>https://orcid.org/0000-0003-2575-467X</orcidid><orcidid>https://orcid.org/0000-0001-6726-6215</orcidid><orcidid>https://orcid.org/0000-0002-2560-4412</orcidid><orcidid>https://orcid.org/0000-0003-4005-7928</orcidid><orcidid>https://orcid.org/0000-0003-3589-0819</orcidid><orcidid>https://orcid.org/0000-0002-6902-003X</orcidid><orcidid>https://orcid.org/0000-0002-7697-1167</orcidid></search><sort><creationdate>20230301</creationdate><title>Strong instrumental variables biased propensity scores in comparative effectiveness research: A case study in oncology</title><author>Thurin, Nicolas H. ; Jové, Jérémy ; Lassalle, Régis ; Rouyer, Magali ; Lamarque, Stéphanie ; Bosco-Levy, Pauline ; Segalas, Corentin ; Schneeweiss, Sebastian ; Blin, Patrick ; Droz-Perroteau, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-2f5d6e8c8cde20d4a36909ed620f45dd41c7526decb9b51b1f8ba0101c102c943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Cancer therapies</topic><topic>Case reports</topic><topic>Castration</topic><topic>Chemotherapy</topic><topic>Cohort analysis</topic><topic>Comparative Effectiveness Research</topic><topic>Comparative studies</topic><topic>Construction</topic><topic>Docetaxel - therapeutic use</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Feature selection</topic><topic>Health care policy</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Instrumental variables</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Matching</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Patients</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Pharmacy</topic><topic>Probability</topic><topic>Propensity Score</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - drug therapy</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Retrospective Studies</topic><topic>Risk reduction</topic><topic>Santé publique et épidémiologie</topic><topic>SNDS</topic><topic>Statistics</topic><topic>Survival</topic><topic>Taxoids - therapeutic use</topic><topic>Treatment Outcome</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thurin, Nicolas H.</creatorcontrib><creatorcontrib>Jové, Jérémy</creatorcontrib><creatorcontrib>Lassalle, Régis</creatorcontrib><creatorcontrib>Rouyer, Magali</creatorcontrib><creatorcontrib>Lamarque, Stéphanie</creatorcontrib><creatorcontrib>Bosco-Levy, Pauline</creatorcontrib><creatorcontrib>Segalas, Corentin</creatorcontrib><creatorcontrib>Schneeweiss, Sebastian</creatorcontrib><creatorcontrib>Blin, Patrick</creatorcontrib><creatorcontrib>Droz-Perroteau, Cécile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thurin, Nicolas H.</au><au>Jové, Jérémy</au><au>Lassalle, Régis</au><au>Rouyer, Magali</au><au>Lamarque, Stéphanie</au><au>Bosco-Levy, Pauline</au><au>Segalas, Corentin</au><au>Schneeweiss, Sebastian</au><au>Blin, Patrick</au><au>Droz-Perroteau, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong instrumental variables biased propensity scores in comparative effectiveness research: A case study in oncology</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>155</volume><spage>31</spage><epage>38</epage><pages>31-38</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Some medications require specific medical procedures in the weeks before their start. Such procedures may meet the definition of instrumental variables (IVs). We examined how they may influence treatment effect estimation in propensity score (PS)-adjusted comparative studies, and how to remedy. Different covariate assessment periods (CAPs) did and did not include the month preceding treatment start were used to compute PS in the French claims database (Sytème National des Données de Santé-SNDS), and 1:1 match patients with metastatic castration resistant prostate cancer initiating abiraterone acetate or docetaxel. The 36-month survival was assessed. Among 1, 213 docetaxel and 2, 442 abiraterone initiators, the PS distribution resulting from the CAP [-12; 0 months] distinctly separated populations (c = 0.93; 273 matched pairs). The CAPs [-12;-1 months] identified 765 pairs (c = 0.81). Strong docetaxel treatment predictors during the month before treatment start were implantable delivery systems (1% vs. 59%), which fulfilled IV conditions. The 36-month survival was not meaningfully different under the [-12; 0 months] CAP but differed by 10% points (38% vs. 28%) after excluding month −1. In the setting of highly predictive pretreatment procedures, excluding the immediate pre-exposure time from the CAP will reduce the risk of including potential IVs in PS models and may reduce bias.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36657590</pmid><doi>10.1016/j.jclinepi.2023.01.002</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9763-5974</orcidid><orcidid>https://orcid.org/0000-0003-2575-467X</orcidid><orcidid>https://orcid.org/0000-0001-6726-6215</orcidid><orcidid>https://orcid.org/0000-0002-2560-4412</orcidid><orcidid>https://orcid.org/0000-0003-4005-7928</orcidid><orcidid>https://orcid.org/0000-0003-3589-0819</orcidid><orcidid>https://orcid.org/0000-0002-6902-003X</orcidid><orcidid>https://orcid.org/0000-0002-7697-1167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2023-03, Vol.155, p.31-38
issn 0895-4356
1878-5921
language eng
recordid cdi_hal_primary_oai_HAL_hal_03988528v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acetic acid
Algorithms
Bias
Cancer therapies
Case reports
Castration
Chemotherapy
Cohort analysis
Comparative Effectiveness Research
Comparative studies
Construction
Docetaxel - therapeutic use
Epidemiology
Estimates
Feature selection
Health care policy
Hospitals
Humans
Instrumental variables
Laboratories
Life Sciences
Male
Matching
Metastases
Metastasis
Patients
Pharmaceutical sciences
Pharmacology
Pharmacy
Probability
Propensity Score
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - pathology
Retrospective Studies
Risk reduction
Santé publique et épidémiologie
SNDS
Statistics
Survival
Taxoids - therapeutic use
Treatment Outcome
Variables
title Strong instrumental variables biased propensity scores in comparative effectiveness research: A case study in oncology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20instrumental%20variables%20biased%20propensity%20scores%20in%20comparative%20effectiveness%20research:%20A%20case%20study%20in%20oncology&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Thurin,%20Nicolas%20H.&rft.date=2023-03-01&rft.volume=155&rft.spage=31&rft.epage=38&rft.pages=31-38&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2023.01.002&rft_dat=%3Cproquest_hal_p%3E2807367514%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807367514&rft_id=info:pmid/36657590&rft_els_id=S0895435623000021&rfr_iscdi=true