Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials

In this work, we have investigated the electrical and dielectric properties of the Mg doped perovskite (La0.8Ca0.1Pb0.1Fe1-xMgxO3 (x = 0.0, x = 0.1 and x = 0.2)) using the electrical impedance spectroscopy in the temperature range of (200–320 K). The crystal structure evaluated by X-Ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-03, Vol.856, p.157425, Article 157425
Hauptverfasser: Bougoffa, Amira, Benali, A., Bejar, M., Dhahri, E., Graça, M.P.F., Valente, M.A., Bessais, L., Costa, B.O.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 157425
container_title Journal of alloys and compounds
container_volume 856
creator Bougoffa, Amira
Benali, A.
Bejar, M.
Dhahri, E.
Graça, M.P.F.
Valente, M.A.
Bessais, L.
Costa, B.O.F.
description In this work, we have investigated the electrical and dielectric properties of the Mg doped perovskite (La0.8Ca0.1Pb0.1Fe1-xMgxO3 (x = 0.0, x = 0.1 and x = 0.2)) using the electrical impedance spectroscopy in the temperature range of (200–320 K). The crystal structure evaluated by X-Ray diffraction proved an orthorhombic structure of all the studied compounds with a Pbnm space group. Impedance fitting based on an equivalent circuit and the M″ fitting confirmed the existence of two relaxation phenomena attributed to grains and grain boundaries contributions. The study of the dc electrical conductivity proved that all compounds followed the variable range hopping (VRH) model at low temperature and the Arrhenius model at high temperature range. From conductivity analysis and the temperature dependence of the Jonscher’s power low exponent, we noted an alternation of correlated barrier hopping (CBH) and non-overlap small polaron tunneling model (NSPT) conduction processes at the studied temperature range. The relaxation phenomenon for both contributions and the deduced activation energies were found to be sensitive to the Mg composition; for the grain contribution, a minimum activation energy value was recorded for x = 0.1 compound and increased for suplementary Mg content. While, for grain contribution the activation decreases with the increase in Mg ion concentration. Concerning the evolution of the magnetization versus temperature, it was measured to investigate the effect of the Mg amount on the magnetic behavior of the prepared compounds under the studied temperature range. •Synthesis of pure nanometricLa0.8Ca0.1Pb0.1Fe1-xMgxO3 powder(x = 0, x = 0.1 and x = 0.2) sol gel route.•The study of dc-conductivity proves the VRH process at low temperature and the Arrhenius model at higher temperature.•The ac conductivity analysis proves an alternation of CBH and NSPT model in the investigated temperature range.•A theoretical modulation confirms the coexistence of the Antiferromagnetic and Ferromagnetic contributions.•10% of Mg2+ decreases the resistance and increases the conductivity which is beneficial to the gas sensing application.
doi_str_mv 10.1016/j.jallcom.2020.157425
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03984356v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820337890</els_id><sourcerecordid>2501860519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-62e90d36daa050c3d5d17e7efc0f1b9c373a9f8ee7c21ed321d743fa52000f583</originalsourceid><addsrcrecordid>eNqFkU1LJDEQhoO44DjrTxACngR7zMekP04yiF8wy152zyGTVJy0PZ0xSQ962d--aVu8egiVqjz1kqoXoXNKFpTQ8rpdtKrrtN8tGGG5JqolE0doRuuKF8uybI7RjDRMFDWv6xN0GmNLCKENpzP079dzEYdNTC4Nyfkeg7WgE863ndPBxxQGnYYAV9g46PJTcBoH6NSb-uBVb7D2vcnUmO630PtdPj32Ft8D3qgIBu8h-EN8cQlwrzKgEgSnuvgT_bA5wNlnnKO_93d_bh-L9e-Hp9vVutC8oqkoGTTE8NIoRQTR3AhDK6jAamLppskQV42tASrNKBjOqKmW3CrB8qBW1HyOLifdrerkPridCu_SKycfV2s51ghv6iUX5YFm9mJi98G_DhCTbP0Q-vw9yQShdUlE3t0ciYkalxQD2C9ZSuRoi2zlpy1ytEVOtuS-m6kP8rgHB0FG7aDXYFzI25XGu28U_gOPb5sn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501860519</pqid></control><display><type>article</type><title>Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Bougoffa, Amira ; Benali, A. ; Bejar, M. ; Dhahri, E. ; Graça, M.P.F. ; Valente, M.A. ; Bessais, L. ; Costa, B.O.F.</creator><creatorcontrib>Bougoffa, Amira ; Benali, A. ; Bejar, M. ; Dhahri, E. ; Graça, M.P.F. ; Valente, M.A. ; Bessais, L. ; Costa, B.O.F.</creatorcontrib><description>In this work, we have investigated the electrical and dielectric properties of the Mg doped perovskite (La0.8Ca0.1Pb0.1Fe1-xMgxO3 (x = 0.0, x = 0.1 and x = 0.2)) using the electrical impedance spectroscopy in the temperature range of (200–320 K). The crystal structure evaluated by X-Ray diffraction proved an orthorhombic structure of all the studied compounds with a Pbnm space group. Impedance fitting based on an equivalent circuit and the M″ fitting confirmed the existence of two relaxation phenomena attributed to grains and grain boundaries contributions. The study of the dc electrical conductivity proved that all compounds followed the variable range hopping (VRH) model at low temperature and the Arrhenius model at high temperature range. From conductivity analysis and the temperature dependence of the Jonscher’s power low exponent, we noted an alternation of correlated barrier hopping (CBH) and non-overlap small polaron tunneling model (NSPT) conduction processes at the studied temperature range. The relaxation phenomenon for both contributions and the deduced activation energies were found to be sensitive to the Mg composition; for the grain contribution, a minimum activation energy value was recorded for x = 0.1 compound and increased for suplementary Mg content. While, for grain contribution the activation decreases with the increase in Mg ion concentration. Concerning the evolution of the magnetization versus temperature, it was measured to investigate the effect of the Mg amount on the magnetic behavior of the prepared compounds under the studied temperature range. •Synthesis of pure nanometricLa0.8Ca0.1Pb0.1Fe1-xMgxO3 powder(x = 0, x = 0.1 and x = 0.2) sol gel route.•The study of dc-conductivity proves the VRH process at low temperature and the Arrhenius model at higher temperature.•The ac conductivity analysis proves an alternation of CBH and NSPT model in the investigated temperature range.•A theoretical modulation confirms the coexistence of the Antiferromagnetic and Ferromagnetic contributions.•10% of Mg2+ decreases the resistance and increases the conductivity which is beneficial to the gas sensing application.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157425</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation energy ; Conduction heating ; Conduction process ; Conductivity ; Crystal structure ; Dielectric properties ; Dielectric relaxation ; Electrical impedance ; Electrical resistivity ; Energy value ; Equivalent circuits ; Grain boundaries ; High temperature ; Impedance ; Ion concentration ; Low temperature ; Magnesium ; Magnetic properties ; Magnetization ; Nanomaterials ; Perovskite ; Perovskites ; Physics ; Temperature dependence</subject><ispartof>Journal of alloys and compounds, 2021-03, Vol.856, p.157425, Article 157425</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 5, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-62e90d36daa050c3d5d17e7efc0f1b9c373a9f8ee7c21ed321d743fa52000f583</citedby><cites>FETCH-LOGICAL-c371t-62e90d36daa050c3d5d17e7efc0f1b9c373a9f8ee7c21ed321d743fa52000f583</cites><orcidid>0000-0001-7236-1604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820337890$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03984356$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bougoffa, Amira</creatorcontrib><creatorcontrib>Benali, A.</creatorcontrib><creatorcontrib>Bejar, M.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Graça, M.P.F.</creatorcontrib><creatorcontrib>Valente, M.A.</creatorcontrib><creatorcontrib>Bessais, L.</creatorcontrib><creatorcontrib>Costa, B.O.F.</creatorcontrib><title>Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials</title><title>Journal of alloys and compounds</title><description>In this work, we have investigated the electrical and dielectric properties of the Mg doped perovskite (La0.8Ca0.1Pb0.1Fe1-xMgxO3 (x = 0.0, x = 0.1 and x = 0.2)) using the electrical impedance spectroscopy in the temperature range of (200–320 K). The crystal structure evaluated by X-Ray diffraction proved an orthorhombic structure of all the studied compounds with a Pbnm space group. Impedance fitting based on an equivalent circuit and the M″ fitting confirmed the existence of two relaxation phenomena attributed to grains and grain boundaries contributions. The study of the dc electrical conductivity proved that all compounds followed the variable range hopping (VRH) model at low temperature and the Arrhenius model at high temperature range. From conductivity analysis and the temperature dependence of the Jonscher’s power low exponent, we noted an alternation of correlated barrier hopping (CBH) and non-overlap small polaron tunneling model (NSPT) conduction processes at the studied temperature range. The relaxation phenomenon for both contributions and the deduced activation energies were found to be sensitive to the Mg composition; for the grain contribution, a minimum activation energy value was recorded for x = 0.1 compound and increased for suplementary Mg content. While, for grain contribution the activation decreases with the increase in Mg ion concentration. Concerning the evolution of the magnetization versus temperature, it was measured to investigate the effect of the Mg amount on the magnetic behavior of the prepared compounds under the studied temperature range. •Synthesis of pure nanometricLa0.8Ca0.1Pb0.1Fe1-xMgxO3 powder(x = 0, x = 0.1 and x = 0.2) sol gel route.•The study of dc-conductivity proves the VRH process at low temperature and the Arrhenius model at higher temperature.•The ac conductivity analysis proves an alternation of CBH and NSPT model in the investigated temperature range.•A theoretical modulation confirms the coexistence of the Antiferromagnetic and Ferromagnetic contributions.•10% of Mg2+ decreases the resistance and increases the conductivity which is beneficial to the gas sensing application.</description><subject>Activation energy</subject><subject>Conduction heating</subject><subject>Conduction process</subject><subject>Conductivity</subject><subject>Crystal structure</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>Energy value</subject><subject>Equivalent circuits</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Impedance</subject><subject>Ion concentration</subject><subject>Low temperature</subject><subject>Magnesium</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Nanomaterials</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Physics</subject><subject>Temperature dependence</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LJDEQhoO44DjrTxACngR7zMekP04yiF8wy152zyGTVJy0PZ0xSQ962d--aVu8egiVqjz1kqoXoXNKFpTQ8rpdtKrrtN8tGGG5JqolE0doRuuKF8uybI7RjDRMFDWv6xN0GmNLCKENpzP079dzEYdNTC4Nyfkeg7WgE863ndPBxxQGnYYAV9g46PJTcBoH6NSb-uBVb7D2vcnUmO630PtdPj32Ft8D3qgIBu8h-EN8cQlwrzKgEgSnuvgT_bA5wNlnnKO_93d_bh-L9e-Hp9vVutC8oqkoGTTE8NIoRQTR3AhDK6jAamLppskQV42tASrNKBjOqKmW3CrB8qBW1HyOLifdrerkPridCu_SKycfV2s51ghv6iUX5YFm9mJi98G_DhCTbP0Q-vw9yQShdUlE3t0ciYkalxQD2C9ZSuRoi2zlpy1ytEVOtuS-m6kP8rgHB0FG7aDXYFzI25XGu28U_gOPb5sn</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Bougoffa, Amira</creator><creator>Benali, A.</creator><creator>Bejar, M.</creator><creator>Dhahri, E.</creator><creator>Graça, M.P.F.</creator><creator>Valente, M.A.</creator><creator>Bessais, L.</creator><creator>Costa, B.O.F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7236-1604</orcidid></search><sort><creationdate>20210305</creationdate><title>Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials</title><author>Bougoffa, Amira ; Benali, A. ; Bejar, M. ; Dhahri, E. ; Graça, M.P.F. ; Valente, M.A. ; Bessais, L. ; Costa, B.O.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-62e90d36daa050c3d5d17e7efc0f1b9c373a9f8ee7c21ed321d743fa52000f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Conduction heating</topic><topic>Conduction process</topic><topic>Conductivity</topic><topic>Crystal structure</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>Energy value</topic><topic>Equivalent circuits</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Impedance</topic><topic>Ion concentration</topic><topic>Low temperature</topic><topic>Magnesium</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Nanomaterials</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Physics</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bougoffa, Amira</creatorcontrib><creatorcontrib>Benali, A.</creatorcontrib><creatorcontrib>Bejar, M.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Graça, M.P.F.</creatorcontrib><creatorcontrib>Valente, M.A.</creatorcontrib><creatorcontrib>Bessais, L.</creatorcontrib><creatorcontrib>Costa, B.O.F.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bougoffa, Amira</au><au>Benali, A.</au><au>Bejar, M.</au><au>Dhahri, E.</au><au>Graça, M.P.F.</au><au>Valente, M.A.</au><au>Bessais, L.</au><au>Costa, B.O.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-03-05</date><risdate>2021</risdate><volume>856</volume><spage>157425</spage><pages>157425-</pages><artnum>157425</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>In this work, we have investigated the electrical and dielectric properties of the Mg doped perovskite (La0.8Ca0.1Pb0.1Fe1-xMgxO3 (x = 0.0, x = 0.1 and x = 0.2)) using the electrical impedance spectroscopy in the temperature range of (200–320 K). The crystal structure evaluated by X-Ray diffraction proved an orthorhombic structure of all the studied compounds with a Pbnm space group. Impedance fitting based on an equivalent circuit and the M″ fitting confirmed the existence of two relaxation phenomena attributed to grains and grain boundaries contributions. The study of the dc electrical conductivity proved that all compounds followed the variable range hopping (VRH) model at low temperature and the Arrhenius model at high temperature range. From conductivity analysis and the temperature dependence of the Jonscher’s power low exponent, we noted an alternation of correlated barrier hopping (CBH) and non-overlap small polaron tunneling model (NSPT) conduction processes at the studied temperature range. The relaxation phenomenon for both contributions and the deduced activation energies were found to be sensitive to the Mg composition; for the grain contribution, a minimum activation energy value was recorded for x = 0.1 compound and increased for suplementary Mg content. While, for grain contribution the activation decreases with the increase in Mg ion concentration. Concerning the evolution of the magnetization versus temperature, it was measured to investigate the effect of the Mg amount on the magnetic behavior of the prepared compounds under the studied temperature range. •Synthesis of pure nanometricLa0.8Ca0.1Pb0.1Fe1-xMgxO3 powder(x = 0, x = 0.1 and x = 0.2) sol gel route.•The study of dc-conductivity proves the VRH process at low temperature and the Arrhenius model at higher temperature.•The ac conductivity analysis proves an alternation of CBH and NSPT model in the investigated temperature range.•A theoretical modulation confirms the coexistence of the Antiferromagnetic and Ferromagnetic contributions.•10% of Mg2+ decreases the resistance and increases the conductivity which is beneficial to the gas sensing application.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157425</doi><orcidid>https://orcid.org/0000-0001-7236-1604</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-03, Vol.856, p.157425, Article 157425
issn 0925-8388
1873-4669
language eng
recordid cdi_hal_primary_oai_HAL_hal_03984356v1
source Elsevier ScienceDirect Journals Collection
subjects Activation energy
Conduction heating
Conduction process
Conductivity
Crystal structure
Dielectric properties
Dielectric relaxation
Electrical impedance
Electrical resistivity
Energy value
Equivalent circuits
Grain boundaries
High temperature
Impedance
Ion concentration
Low temperature
Magnesium
Magnetic properties
Magnetization
Nanomaterials
Perovskite
Perovskites
Physics
Temperature dependence
title Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg-substitution%20effect%20on%20microstructure,%20dielectric%20relaxation%20and%20conduction%20phenomenon%20of%20Fe%20based%20perovskite%20nanomaterials&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Bougoffa,%20Amira&rft.date=2021-03-05&rft.volume=856&rft.spage=157425&rft.pages=157425-&rft.artnum=157425&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157425&rft_dat=%3Cproquest_hal_p%3E2501860519%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501860519&rft_id=info:pmid/&rft_els_id=S0925838820337890&rfr_iscdi=true