Estimation of main shock frequency–magnitude distributions by adapting the inter-event time method for low-to-moderate seismicity areas: application to French mainland
Assessing seismic risk in low-to-moderate seismic activity areas like French mainland is a challenge. In these areas, the estimation of large earthquake hazard calls for models driven by sparse observation data and interpretative seismic knowledge. This leads models used in probabilistic seismic haz...
Gespeichert in:
Veröffentlicht in: | Journal of seismology 2021-06, Vol.25 (3), p.771-782 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 3 |
container_start_page | 771 |
container_title | Journal of seismology |
container_volume | 25 |
creator | Gouache, C. Bonneau, F. Tinard, P. Montel, J. M. |
description | Assessing seismic risk in low-to-moderate seismic activity areas like French mainland is a challenge. In these areas, the estimation of large earthquake hazard calls for models driven by sparse observation data and interpretative seismic knowledge. This leads models used in probabilistic seismic hazard assessment (PSHA) and declustering algorithms to large epistemic uncertainties that are overrepresented due to the large amount of parameters used in it. To concentrate epistemic uncertainties into one single method, we intend to limit the number of parameters under consideration by using the non-parametric inter-event time method. This method is empirical and needs a lot of data to be accurate. In the context of sparse large earthquake data, this paper proposes an implementation of the inter-event time method that ensures the stability of main shock proportions for sparse seismic data. We call this implementation
magnitude of inferred main shock proportion
(MIMP). This method is applied to the historical French seismic catalogue. We use a Monte Carlo Markov Chain to sample the whole space of magnitude uncertainties contained in this catalogue. We produce a set of equiprobable main shock proportion–magnitude and frequency–magnitude distributions. Results are discussed in the light of reference works published in the literature. |
doi_str_mv | 10.1007/s10950-021-10001-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03979908v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533050993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-bf3abe00727138b7ee10efea6f5dd2880f8313db82dad88dd0b3d0b0cebf70d23</originalsourceid><addsrcrecordid>eNp9UU1O3TAYjFArQWkvwMpSV12Y2jEhdncI8VPpSd0UqTvLiT-_GBI72H6gt-MOPQXX6kn6PVLRHQv_amY8nqmqI86OOWPt18yZahhlNad4ZpzKveqAN62gOP16h3shBT05PVH71YecbxGjpBIH1fNFLn4yxcdAoiOT8YHkIfZ3xCW430Dot3-efk9mHXzZWCDW55J8t9kRMum2xFgzFx_WpAxAfCiQKDxAKARlgUxQhmiJi4mM8ZGWSKdoIZkCJIPPk-99QY0EJn8jZp5H3y9eSiSXCV8fXiyNJtiP1Xtnxgyf_q2H1c3lxc_za7r6cfX9_GxFjajbQjsnTAeYSd3in7sWgDNwYE5dY20tJXNScGE7WVtjpbSWdQIH66FzLbO1OKy-LLqDGfWcMJy01dF4fX220rs7JlSrFJMPHLGfF-ycIoaVi76NmxTQnq4bIVjDlBKIqhdUn2LOCdyrLGd6V59e6tNYn36pT0skiYWUERzWkP5Lv8H6C0YLoxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533050993</pqid></control><display><type>article</type><title>Estimation of main shock frequency–magnitude distributions by adapting the inter-event time method for low-to-moderate seismicity areas: application to French mainland</title><source>Springer Nature - Complete Springer Journals</source><creator>Gouache, C. ; Bonneau, F. ; Tinard, P. ; Montel, J. M.</creator><creatorcontrib>Gouache, C. ; Bonneau, F. ; Tinard, P. ; Montel, J. M.</creatorcontrib><description>Assessing seismic risk in low-to-moderate seismic activity areas like French mainland is a challenge. In these areas, the estimation of large earthquake hazard calls for models driven by sparse observation data and interpretative seismic knowledge. This leads models used in probabilistic seismic hazard assessment (PSHA) and declustering algorithms to large epistemic uncertainties that are overrepresented due to the large amount of parameters used in it. To concentrate epistemic uncertainties into one single method, we intend to limit the number of parameters under consideration by using the non-parametric inter-event time method. This method is empirical and needs a lot of data to be accurate. In the context of sparse large earthquake data, this paper proposes an implementation of the inter-event time method that ensures the stability of main shock proportions for sparse seismic data. We call this implementation
magnitude of inferred main shock proportion
(MIMP). This method is applied to the historical French seismic catalogue. We use a Monte Carlo Markov Chain to sample the whole space of magnitude uncertainties contained in this catalogue. We produce a set of equiprobable main shock proportion–magnitude and frequency–magnitude distributions. Results are discussed in the light of reference works published in the literature.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-021-10001-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Catalogues ; Earth and Environmental Science ; Earth Sciences ; Earthquake data ; Earthquakes ; Geological hazards ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hazard assessment ; Hydrogeology ; Markov chains ; Mathematical models ; Original Article ; Parameters ; Sciences of the Universe ; Seismic activity ; Seismic data ; Seismic hazard ; Seismic stability ; Seismicity ; Seismological data ; Seismology ; Shock ; Statistical methods ; Structural Geology ; Uncertainty</subject><ispartof>Journal of seismology, 2021-06, Vol.25 (3), p.771-782</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a327t-bf3abe00727138b7ee10efea6f5dd2880f8313db82dad88dd0b3d0b0cebf70d23</cites><orcidid>0000-0003-0095-5061 ; 0000-0002-9324-7998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-021-10001-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-021-10001-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03979908$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouache, C.</creatorcontrib><creatorcontrib>Bonneau, F.</creatorcontrib><creatorcontrib>Tinard, P.</creatorcontrib><creatorcontrib>Montel, J. M.</creatorcontrib><title>Estimation of main shock frequency–magnitude distributions by adapting the inter-event time method for low-to-moderate seismicity areas: application to French mainland</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>Assessing seismic risk in low-to-moderate seismic activity areas like French mainland is a challenge. In these areas, the estimation of large earthquake hazard calls for models driven by sparse observation data and interpretative seismic knowledge. This leads models used in probabilistic seismic hazard assessment (PSHA) and declustering algorithms to large epistemic uncertainties that are overrepresented due to the large amount of parameters used in it. To concentrate epistemic uncertainties into one single method, we intend to limit the number of parameters under consideration by using the non-parametric inter-event time method. This method is empirical and needs a lot of data to be accurate. In the context of sparse large earthquake data, this paper proposes an implementation of the inter-event time method that ensures the stability of main shock proportions for sparse seismic data. We call this implementation
magnitude of inferred main shock proportion
(MIMP). This method is applied to the historical French seismic catalogue. We use a Monte Carlo Markov Chain to sample the whole space of magnitude uncertainties contained in this catalogue. We produce a set of equiprobable main shock proportion–magnitude and frequency–magnitude distributions. Results are discussed in the light of reference works published in the literature.</description><subject>Algorithms</subject><subject>Catalogues</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquake data</subject><subject>Earthquakes</subject><subject>Geological hazards</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hazard assessment</subject><subject>Hydrogeology</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>Seismic hazard</subject><subject>Seismic stability</subject><subject>Seismicity</subject><subject>Seismological data</subject><subject>Seismology</subject><subject>Shock</subject><subject>Statistical methods</subject><subject>Structural Geology</subject><subject>Uncertainty</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1O3TAYjFArQWkvwMpSV12Y2jEhdncI8VPpSd0UqTvLiT-_GBI72H6gt-MOPQXX6kn6PVLRHQv_amY8nqmqI86OOWPt18yZahhlNad4ZpzKveqAN62gOP16h3shBT05PVH71YecbxGjpBIH1fNFLn4yxcdAoiOT8YHkIfZ3xCW430Dot3-efk9mHXzZWCDW55J8t9kRMum2xFgzFx_WpAxAfCiQKDxAKARlgUxQhmiJi4mM8ZGWSKdoIZkCJIPPk-99QY0EJn8jZp5H3y9eSiSXCV8fXiyNJtiP1Xtnxgyf_q2H1c3lxc_za7r6cfX9_GxFjajbQjsnTAeYSd3in7sWgDNwYE5dY20tJXNScGE7WVtjpbSWdQIH66FzLbO1OKy-LLqDGfWcMJy01dF4fX220rs7JlSrFJMPHLGfF-ycIoaVi76NmxTQnq4bIVjDlBKIqhdUn2LOCdyrLGd6V59e6tNYn36pT0skiYWUERzWkP5Lv8H6C0YLoxM</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gouache, C.</creator><creator>Bonneau, F.</creator><creator>Tinard, P.</creator><creator>Montel, J. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0095-5061</orcidid><orcidid>https://orcid.org/0000-0002-9324-7998</orcidid></search><sort><creationdate>20210601</creationdate><title>Estimation of main shock frequency–magnitude distributions by adapting the inter-event time method for low-to-moderate seismicity areas: application to French mainland</title><author>Gouache, C. ; Bonneau, F. ; Tinard, P. ; Montel, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-bf3abe00727138b7ee10efea6f5dd2880f8313db82dad88dd0b3d0b0cebf70d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Catalogues</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquake data</topic><topic>Earthquakes</topic><topic>Geological hazards</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hazard assessment</topic><topic>Hydrogeology</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>Seismic hazard</topic><topic>Seismic stability</topic><topic>Seismicity</topic><topic>Seismological data</topic><topic>Seismology</topic><topic>Shock</topic><topic>Statistical methods</topic><topic>Structural Geology</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouache, C.</creatorcontrib><creatorcontrib>Bonneau, F.</creatorcontrib><creatorcontrib>Tinard, P.</creatorcontrib><creatorcontrib>Montel, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouache, C.</au><au>Bonneau, F.</au><au>Tinard, P.</au><au>Montel, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of main shock frequency–magnitude distributions by adapting the inter-event time method for low-to-moderate seismicity areas: application to French mainland</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>771</spage><epage>782</epage><pages>771-782</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>Assessing seismic risk in low-to-moderate seismic activity areas like French mainland is a challenge. In these areas, the estimation of large earthquake hazard calls for models driven by sparse observation data and interpretative seismic knowledge. This leads models used in probabilistic seismic hazard assessment (PSHA) and declustering algorithms to large epistemic uncertainties that are overrepresented due to the large amount of parameters used in it. To concentrate epistemic uncertainties into one single method, we intend to limit the number of parameters under consideration by using the non-parametric inter-event time method. This method is empirical and needs a lot of data to be accurate. In the context of sparse large earthquake data, this paper proposes an implementation of the inter-event time method that ensures the stability of main shock proportions for sparse seismic data. We call this implementation
magnitude of inferred main shock proportion
(MIMP). This method is applied to the historical French seismic catalogue. We use a Monte Carlo Markov Chain to sample the whole space of magnitude uncertainties contained in this catalogue. We produce a set of equiprobable main shock proportion–magnitude and frequency–magnitude distributions. Results are discussed in the light of reference works published in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-021-10001-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0095-5061</orcidid><orcidid>https://orcid.org/0000-0002-9324-7998</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-4649 |
ispartof | Journal of seismology, 2021-06, Vol.25 (3), p.771-782 |
issn | 1383-4649 1573-157X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03979908v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Catalogues Earth and Environmental Science Earth Sciences Earthquake data Earthquakes Geological hazards Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hazard assessment Hydrogeology Markov chains Mathematical models Original Article Parameters Sciences of the Universe Seismic activity Seismic data Seismic hazard Seismic stability Seismicity Seismological data Seismology Shock Statistical methods Structural Geology Uncertainty |
title | Estimation of main shock frequency–magnitude distributions by adapting the inter-event time method for low-to-moderate seismicity areas: application to French mainland |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20main%20shock%20frequency%E2%80%93magnitude%20distributions%20by%20adapting%20the%20inter-event%20time%20method%20for%20low-to-moderate%20seismicity%20areas:%20application%20to%20French%20mainland&rft.jtitle=Journal%20of%20seismology&rft.au=Gouache,%20C.&rft.date=2021-06-01&rft.volume=25&rft.issue=3&rft.spage=771&rft.epage=782&rft.pages=771-782&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-021-10001-8&rft_dat=%3Cproquest_hal_p%3E2533050993%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533050993&rft_id=info:pmid/&rfr_iscdi=true |