Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles
Beyond its various properties, the model multiferroic BiFeO3 (BFO) displays a rich magnetic structure illustrated in the bulk by its long period (∼62 nm) spin cycloidal modulation. Here, BFO nanoparticles are produced by a facile hydrothermal method and show average size of 8 nm and a narrow size di...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2023-02, Vol.934, p.167944, Article 167944 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 167944 |
container_title | Journal of alloys and compounds |
container_volume | 934 |
creator | Mallek-Zouari, I. Ben Taazayet, W. Grenèche, J.-M. Bessais, L. Dkhil, B. Thabet Mliki, N. |
description | Beyond its various properties, the model multiferroic BiFeO3 (BFO) displays a rich magnetic structure illustrated in the bulk by its long period (∼62 nm) spin cycloidal modulation. Here, BFO nanoparticles are produced by a facile hydrothermal method and show average size of 8 nm and a narrow size distribution, as determined using x-ray diffraction analysis and transmission electron microscopy images. Mössbauer spectrometry (MS) unambiguously reveals that a cycloidal modulation does still exists with particles about 5 times smaller than the bulk cycloid. Combining macroscopic magnetic measurements and in situ Mössbauer spectrometry, we demonstrate that a critical magnetic field of ∼0.2 T destabilizes the cycloidal modulation to lead to a homogenous antiferromagnetic state, as the result of magnetic anisotropy due to magnetoelastic and surface-confinement effects. More interestingly, further increasing of the external magnetic field up to 8 T does not change the average magnetic hyperfine field and results into multiple Mössbauer sextets we propose to explain by a flexomagnetic effect i.e. magnetic anisotropies resulting from strain gradients due to a continuous variation of the coupling between magnetization and the structural distortion from the surface to the particle core.
•Successful synthesis of 8 nm BFO nanoparticles by a facile hydrothermal process.•XRD analysis and TEM characterization.•Demonstration of the destabilization of cycloidal modulation by combining macroscopic magnetic measurements and in situ Mössbauer spectroscopy. |
doi_str_mv | 10.1016/j.jallcom.2022.167944 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03975225v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822043353</els_id><sourcerecordid>oai_HAL_hal_03975225v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-99798e8fabc8f9f2ffc0ac861687c261868cd5eaa317f6415b4c901b1d30b6633</originalsourceid><addsrcrecordid>eNqFkM1qGzEUhUVpIK6bRwho28U40mhGI61KGuq4YPCmXYs70lUqI0tGmoRm2TfPOA7psqsL9_zA-Qi55mzFGZc3-9UeYrT5sGpZ2664HHTXfSALrgbRdFLqj2TBdNs3Sih1ST7VumeMcS34gvxdB4yuCck9WnS0HkOi9tnGHBxEesjuMcIUcqJTppCm4LGUfICHhFOwdCqQanjVITl6zLWGMSL1Ef_8c6H3aCc6N38La9wJmiDlI5RZi1g_kwsPseLV212SX-vvP-82zXZ3_-PudttY0Ymp0XrQCpWH0Sqvfeu9ZWCV5FINtpVcSWVdjwCCD152vB87qxkfuRNslFKIJfly7v0N0RxLOEB5NhmC2dxuzenHhB76tu2f-Oztz15b5kkF_XuAM3Nibvbmjbk5MTdn5nPu6zmH85CngMVUGzDNZEOZERiXw38aXgDNWI_z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Mallek-Zouari, I. ; Ben Taazayet, W. ; Grenèche, J.-M. ; Bessais, L. ; Dkhil, B. ; Thabet Mliki, N.</creator><creatorcontrib>Mallek-Zouari, I. ; Ben Taazayet, W. ; Grenèche, J.-M. ; Bessais, L. ; Dkhil, B. ; Thabet Mliki, N.</creatorcontrib><description>Beyond its various properties, the model multiferroic BiFeO3 (BFO) displays a rich magnetic structure illustrated in the bulk by its long period (∼62 nm) spin cycloidal modulation. Here, BFO nanoparticles are produced by a facile hydrothermal method and show average size of 8 nm and a narrow size distribution, as determined using x-ray diffraction analysis and transmission electron microscopy images. Mössbauer spectrometry (MS) unambiguously reveals that a cycloidal modulation does still exists with particles about 5 times smaller than the bulk cycloid. Combining macroscopic magnetic measurements and in situ Mössbauer spectrometry, we demonstrate that a critical magnetic field of ∼0.2 T destabilizes the cycloidal modulation to lead to a homogenous antiferromagnetic state, as the result of magnetic anisotropy due to magnetoelastic and surface-confinement effects. More interestingly, further increasing of the external magnetic field up to 8 T does not change the average magnetic hyperfine field and results into multiple Mössbauer sextets we propose to explain by a flexomagnetic effect i.e. magnetic anisotropies resulting from strain gradients due to a continuous variation of the coupling between magnetization and the structural distortion from the surface to the particle core.
•Successful synthesis of 8 nm BFO nanoparticles by a facile hydrothermal process.•XRD analysis and TEM characterization.•Demonstration of the destabilization of cycloidal modulation by combining macroscopic magnetic measurements and in situ Mössbauer spectroscopy.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.167944</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Multiferroic hydrothermal method DRX Transmission Electron microscopy Mössbauer spectroscopy magnetic characterization ; Physics</subject><ispartof>Journal of alloys and compounds, 2023-02, Vol.934, p.167944, Article 167944</ispartof><rights>2022 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-99798e8fabc8f9f2ffc0ac861687c261868cd5eaa317f6415b4c901b1d30b6633</citedby><cites>FETCH-LOGICAL-c343t-99798e8fabc8f9f2ffc0ac861687c261868cd5eaa317f6415b4c901b1d30b6633</cites><orcidid>0000-0002-1996-8770 ; 0000-0002-9862-625X ; 0000-0003-4052-934X ; 0000-0001-7236-1604 ; 0000-0001-7309-8633 ; 0000-0003-3253-0041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838822043353$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-03975225$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mallek-Zouari, I.</creatorcontrib><creatorcontrib>Ben Taazayet, W.</creatorcontrib><creatorcontrib>Grenèche, J.-M.</creatorcontrib><creatorcontrib>Bessais, L.</creatorcontrib><creatorcontrib>Dkhil, B.</creatorcontrib><creatorcontrib>Thabet Mliki, N.</creatorcontrib><title>Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles</title><title>Journal of alloys and compounds</title><description>Beyond its various properties, the model multiferroic BiFeO3 (BFO) displays a rich magnetic structure illustrated in the bulk by its long period (∼62 nm) spin cycloidal modulation. Here, BFO nanoparticles are produced by a facile hydrothermal method and show average size of 8 nm and a narrow size distribution, as determined using x-ray diffraction analysis and transmission electron microscopy images. Mössbauer spectrometry (MS) unambiguously reveals that a cycloidal modulation does still exists with particles about 5 times smaller than the bulk cycloid. Combining macroscopic magnetic measurements and in situ Mössbauer spectrometry, we demonstrate that a critical magnetic field of ∼0.2 T destabilizes the cycloidal modulation to lead to a homogenous antiferromagnetic state, as the result of magnetic anisotropy due to magnetoelastic and surface-confinement effects. More interestingly, further increasing of the external magnetic field up to 8 T does not change the average magnetic hyperfine field and results into multiple Mössbauer sextets we propose to explain by a flexomagnetic effect i.e. magnetic anisotropies resulting from strain gradients due to a continuous variation of the coupling between magnetization and the structural distortion from the surface to the particle core.
•Successful synthesis of 8 nm BFO nanoparticles by a facile hydrothermal process.•XRD analysis and TEM characterization.•Demonstration of the destabilization of cycloidal modulation by combining macroscopic magnetic measurements and in situ Mössbauer spectroscopy.</description><subject>Multiferroic hydrothermal method DRX Transmission Electron microscopy Mössbauer spectroscopy magnetic characterization</subject><subject>Physics</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qGzEUhUVpIK6bRwho28U40mhGI61KGuq4YPCmXYs70lUqI0tGmoRm2TfPOA7psqsL9_zA-Qi55mzFGZc3-9UeYrT5sGpZ2664HHTXfSALrgbRdFLqj2TBdNs3Sih1ST7VumeMcS34gvxdB4yuCck9WnS0HkOi9tnGHBxEesjuMcIUcqJTppCm4LGUfICHhFOwdCqQanjVITl6zLWGMSL1Ef_8c6H3aCc6N38La9wJmiDlI5RZi1g_kwsPseLV212SX-vvP-82zXZ3_-PudttY0Ymp0XrQCpWH0Sqvfeu9ZWCV5FINtpVcSWVdjwCCD152vB87qxkfuRNslFKIJfly7v0N0RxLOEB5NhmC2dxuzenHhB76tu2f-Oztz15b5kkF_XuAM3Nibvbmjbk5MTdn5nPu6zmH85CngMVUGzDNZEOZERiXw38aXgDNWI_z</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Mallek-Zouari, I.</creator><creator>Ben Taazayet, W.</creator><creator>Grenèche, J.-M.</creator><creator>Bessais, L.</creator><creator>Dkhil, B.</creator><creator>Thabet Mliki, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1996-8770</orcidid><orcidid>https://orcid.org/0000-0002-9862-625X</orcidid><orcidid>https://orcid.org/0000-0003-4052-934X</orcidid><orcidid>https://orcid.org/0000-0001-7236-1604</orcidid><orcidid>https://orcid.org/0000-0001-7309-8633</orcidid><orcidid>https://orcid.org/0000-0003-3253-0041</orcidid></search><sort><creationdate>20230210</creationdate><title>Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles</title><author>Mallek-Zouari, I. ; Ben Taazayet, W. ; Grenèche, J.-M. ; Bessais, L. ; Dkhil, B. ; Thabet Mliki, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-99798e8fabc8f9f2ffc0ac861687c261868cd5eaa317f6415b4c901b1d30b6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Multiferroic hydrothermal method DRX Transmission Electron microscopy Mössbauer spectroscopy magnetic characterization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallek-Zouari, I.</creatorcontrib><creatorcontrib>Ben Taazayet, W.</creatorcontrib><creatorcontrib>Grenèche, J.-M.</creatorcontrib><creatorcontrib>Bessais, L.</creatorcontrib><creatorcontrib>Dkhil, B.</creatorcontrib><creatorcontrib>Thabet Mliki, N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallek-Zouari, I.</au><au>Ben Taazayet, W.</au><au>Grenèche, J.-M.</au><au>Bessais, L.</au><au>Dkhil, B.</au><au>Thabet Mliki, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2023-02-10</date><risdate>2023</risdate><volume>934</volume><spage>167944</spage><pages>167944-</pages><artnum>167944</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Beyond its various properties, the model multiferroic BiFeO3 (BFO) displays a rich magnetic structure illustrated in the bulk by its long period (∼62 nm) spin cycloidal modulation. Here, BFO nanoparticles are produced by a facile hydrothermal method and show average size of 8 nm and a narrow size distribution, as determined using x-ray diffraction analysis and transmission electron microscopy images. Mössbauer spectrometry (MS) unambiguously reveals that a cycloidal modulation does still exists with particles about 5 times smaller than the bulk cycloid. Combining macroscopic magnetic measurements and in situ Mössbauer spectrometry, we demonstrate that a critical magnetic field of ∼0.2 T destabilizes the cycloidal modulation to lead to a homogenous antiferromagnetic state, as the result of magnetic anisotropy due to magnetoelastic and surface-confinement effects. More interestingly, further increasing of the external magnetic field up to 8 T does not change the average magnetic hyperfine field and results into multiple Mössbauer sextets we propose to explain by a flexomagnetic effect i.e. magnetic anisotropies resulting from strain gradients due to a continuous variation of the coupling between magnetization and the structural distortion from the surface to the particle core.
•Successful synthesis of 8 nm BFO nanoparticles by a facile hydrothermal process.•XRD analysis and TEM characterization.•Demonstration of the destabilization of cycloidal modulation by combining macroscopic magnetic measurements and in situ Mössbauer spectroscopy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.167944</doi><orcidid>https://orcid.org/0000-0002-1996-8770</orcidid><orcidid>https://orcid.org/0000-0002-9862-625X</orcidid><orcidid>https://orcid.org/0000-0003-4052-934X</orcidid><orcidid>https://orcid.org/0000-0001-7236-1604</orcidid><orcidid>https://orcid.org/0000-0001-7309-8633</orcidid><orcidid>https://orcid.org/0000-0003-3253-0041</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2023-02, Vol.934, p.167944, Article 167944 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03975225v1 |
source | Elsevier ScienceDirect Journals |
subjects | Multiferroic hydrothermal method DRX Transmission Electron microscopy Mössbauer spectroscopy magnetic characterization Physics |
title | Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-induced%20spin%20cycloidal%20modulation%20to%20antiferromagnetic%20transition%20and%20possible%20flexomagnetic%20effect%20in%20BiFeO3%20nanoparticles&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mallek-Zouari,%20I.&rft.date=2023-02-10&rft.volume=934&rft.spage=167944&rft.pages=167944-&rft.artnum=167944&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.167944&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03975225v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0925838822043353&rfr_iscdi=true |