Dual bandgap operation of a GaAs/Si photoelectrode

The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2023-03, Vol.251, p.112138, Article 112138
Hauptverfasser: Piriyev, Mekan, Loget, Gabriel, Léger, Yoan, Chen, Lipin, Létoublon, Antoine, Rohel, Tony, Levallois, Christophe, Le Pouliquen, Julie, Fabre, Bruno, Bertru, Nicolas, Cornet, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112138
container_title Solar energy materials and solar cells
container_volume 251
creator Piriyev, Mekan
Loget, Gabriel
Léger, Yoan
Chen, Lipin
Létoublon, Antoine
Rohel, Tony
Levallois, Christophe
Le Pouliquen, Julie
Fabre, Bruno
Bertru, Nicolas
Cornet, Charles
description The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes. A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted] •High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.
doi_str_mv 10.1016/j.solmat.2022.112138
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03966710v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822005554</els_id><sourcerecordid>oai_HAL_hal_03966710v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKv_wMNePew2b5Im2YtQqm2FBQ_qOaT5sCnbZknWgv_eLSsePQ0MMwPzIHQPuAIMfLavcmwPuq8IJqQCIEDlBZqAFHVJaS0v0QTXRJSYMHmNbnLeY4wJp2yCyNOXboutPtpP3RWxc0n3IR6L6AtdrPUiz95C0e1iH13rTJ-idbfoyus2u7tfnaKP1fP7clM2r-uX5aIpDZW8Lz21TjDGfC3k3HoL1ktG3RxzTmDLrOaEOtiCBPBiUCI1m5vaEkGZMYLQKXoYd3e6VV0KB52-VdRBbRaNOnuY1pwLwCcYsmzMmhRzTs7_FQCrMyO1VyMjdWakRkZD7XGsueHHKbiksgnuaJwNaXirbAz_D_wA6IFvSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual bandgap operation of a GaAs/Si photoelectrode</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Piriyev, Mekan ; Loget, Gabriel ; Léger, Yoan ; Chen, Lipin ; Létoublon, Antoine ; Rohel, Tony ; Levallois, Christophe ; Le Pouliquen, Julie ; Fabre, Bruno ; Bertru, Nicolas ; Cornet, Charles</creator><creatorcontrib>Piriyev, Mekan ; Loget, Gabriel ; Léger, Yoan ; Chen, Lipin ; Létoublon, Antoine ; Rohel, Tony ; Levallois, Christophe ; Le Pouliquen, Julie ; Fabre, Bruno ; Bertru, Nicolas ; Cornet, Charles</creatorcontrib><description>The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes. A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted] •High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.112138</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Catalysis ; Chemical Sciences ; Condensed Matter ; Dual bandgap ; GaAs/Si photoelectrode ; III-V semiconductors on silicon ; Light absorption ; Materials Science ; Photoelectrochemistry ; Physics</subject><ispartof>Solar energy materials and solar cells, 2023-03, Vol.251, p.112138, Article 112138</ispartof><rights>2022 Elsevier B.V.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</citedby><cites>FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</cites><orcidid>0000-0002-0488-7812 ; 0000-0003-0807-0049 ; 0000-0002-1363-7401 ; 0000-0002-4378-260X ; 0000-0001-5832-0769 ; 0000-0002-3655-5943 ; 0000-0003-4809-5013 ; 0009-0002-4947-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2022.112138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03966710$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Piriyev, Mekan</creatorcontrib><creatorcontrib>Loget, Gabriel</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Le Pouliquen, Julie</creatorcontrib><creatorcontrib>Fabre, Bruno</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><title>Dual bandgap operation of a GaAs/Si photoelectrode</title><title>Solar energy materials and solar cells</title><description>The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes. A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted] •High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Dual bandgap</subject><subject>GaAs/Si photoelectrode</subject><subject>III-V semiconductors on silicon</subject><subject>Light absorption</subject><subject>Materials Science</subject><subject>Photoelectrochemistry</subject><subject>Physics</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKv_wMNePew2b5Im2YtQqm2FBQ_qOaT5sCnbZknWgv_eLSsePQ0MMwPzIHQPuAIMfLavcmwPuq8IJqQCIEDlBZqAFHVJaS0v0QTXRJSYMHmNbnLeY4wJp2yCyNOXboutPtpP3RWxc0n3IR6L6AtdrPUiz95C0e1iH13rTJ-idbfoyus2u7tfnaKP1fP7clM2r-uX5aIpDZW8Lz21TjDGfC3k3HoL1ktG3RxzTmDLrOaEOtiCBPBiUCI1m5vaEkGZMYLQKXoYd3e6VV0KB52-VdRBbRaNOnuY1pwLwCcYsmzMmhRzTs7_FQCrMyO1VyMjdWakRkZD7XGsueHHKbiksgnuaJwNaXirbAz_D_wA6IFvSQ</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Piriyev, Mekan</creator><creator>Loget, Gabriel</creator><creator>Léger, Yoan</creator><creator>Chen, Lipin</creator><creator>Létoublon, Antoine</creator><creator>Rohel, Tony</creator><creator>Levallois, Christophe</creator><creator>Le Pouliquen, Julie</creator><creator>Fabre, Bruno</creator><creator>Bertru, Nicolas</creator><creator>Cornet, Charles</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0488-7812</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0003-4809-5013</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid></search><sort><creationdate>202303</creationdate><title>Dual bandgap operation of a GaAs/Si photoelectrode</title><author>Piriyev, Mekan ; Loget, Gabriel ; Léger, Yoan ; Chen, Lipin ; Létoublon, Antoine ; Rohel, Tony ; Levallois, Christophe ; Le Pouliquen, Julie ; Fabre, Bruno ; Bertru, Nicolas ; Cornet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Dual bandgap</topic><topic>GaAs/Si photoelectrode</topic><topic>III-V semiconductors on silicon</topic><topic>Light absorption</topic><topic>Materials Science</topic><topic>Photoelectrochemistry</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piriyev, Mekan</creatorcontrib><creatorcontrib>Loget, Gabriel</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Le Pouliquen, Julie</creatorcontrib><creatorcontrib>Fabre, Bruno</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piriyev, Mekan</au><au>Loget, Gabriel</au><au>Léger, Yoan</au><au>Chen, Lipin</au><au>Létoublon, Antoine</au><au>Rohel, Tony</au><au>Levallois, Christophe</au><au>Le Pouliquen, Julie</au><au>Fabre, Bruno</au><au>Bertru, Nicolas</au><au>Cornet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual bandgap operation of a GaAs/Si photoelectrode</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2023-03</date><risdate>2023</risdate><volume>251</volume><spage>112138</spage><pages>112138-</pages><artnum>112138</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes. A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted] •High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.112138</doi><orcidid>https://orcid.org/0000-0002-0488-7812</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0003-4809-5013</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2023-03, Vol.251, p.112138, Article 112138
issn 0927-0248
1879-3398
language eng
recordid cdi_hal_primary_oai_HAL_hal_03966710v1
source ScienceDirect Journals (5 years ago - present)
subjects Catalysis
Chemical Sciences
Condensed Matter
Dual bandgap
GaAs/Si photoelectrode
III-V semiconductors on silicon
Light absorption
Materials Science
Photoelectrochemistry
Physics
title Dual bandgap operation of a GaAs/Si photoelectrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20bandgap%20operation%20of%20a%20GaAs/Si%20photoelectrode&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Piriyev,%20Mekan&rft.date=2023-03&rft.volume=251&rft.spage=112138&rft.pages=112138-&rft.artnum=112138&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.112138&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03966710v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927024822005554&rfr_iscdi=true