Dual bandgap operation of a GaAs/Si photoelectrode
The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2023-03, Vol.251, p.112138, Article 112138 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112138 |
container_title | Solar energy materials and solar cells |
container_volume | 251 |
creator | Piriyev, Mekan Loget, Gabriel Léger, Yoan Chen, Lipin Létoublon, Antoine Rohel, Tony Levallois, Christophe Le Pouliquen, Julie Fabre, Bruno Bertru, Nicolas Cornet, Charles |
description | The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes.
A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted]
•High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes. |
doi_str_mv | 10.1016/j.solmat.2022.112138 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03966710v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822005554</els_id><sourcerecordid>oai_HAL_hal_03966710v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKv_wMNePew2b5Im2YtQqm2FBQ_qOaT5sCnbZknWgv_eLSsePQ0MMwPzIHQPuAIMfLavcmwPuq8IJqQCIEDlBZqAFHVJaS0v0QTXRJSYMHmNbnLeY4wJp2yCyNOXboutPtpP3RWxc0n3IR6L6AtdrPUiz95C0e1iH13rTJ-idbfoyus2u7tfnaKP1fP7clM2r-uX5aIpDZW8Lz21TjDGfC3k3HoL1ktG3RxzTmDLrOaEOtiCBPBiUCI1m5vaEkGZMYLQKXoYd3e6VV0KB52-VdRBbRaNOnuY1pwLwCcYsmzMmhRzTs7_FQCrMyO1VyMjdWakRkZD7XGsueHHKbiksgnuaJwNaXirbAz_D_wA6IFvSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual bandgap operation of a GaAs/Si photoelectrode</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Piriyev, Mekan ; Loget, Gabriel ; Léger, Yoan ; Chen, Lipin ; Létoublon, Antoine ; Rohel, Tony ; Levallois, Christophe ; Le Pouliquen, Julie ; Fabre, Bruno ; Bertru, Nicolas ; Cornet, Charles</creator><creatorcontrib>Piriyev, Mekan ; Loget, Gabriel ; Léger, Yoan ; Chen, Lipin ; Létoublon, Antoine ; Rohel, Tony ; Levallois, Christophe ; Le Pouliquen, Julie ; Fabre, Bruno ; Bertru, Nicolas ; Cornet, Charles</creatorcontrib><description>The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes.
A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted]
•High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.112138</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Catalysis ; Chemical Sciences ; Condensed Matter ; Dual bandgap ; GaAs/Si photoelectrode ; III-V semiconductors on silicon ; Light absorption ; Materials Science ; Photoelectrochemistry ; Physics</subject><ispartof>Solar energy materials and solar cells, 2023-03, Vol.251, p.112138, Article 112138</ispartof><rights>2022 Elsevier B.V.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</citedby><cites>FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</cites><orcidid>0000-0002-0488-7812 ; 0000-0003-0807-0049 ; 0000-0002-1363-7401 ; 0000-0002-4378-260X ; 0000-0001-5832-0769 ; 0000-0002-3655-5943 ; 0000-0003-4809-5013 ; 0009-0002-4947-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2022.112138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03966710$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Piriyev, Mekan</creatorcontrib><creatorcontrib>Loget, Gabriel</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Le Pouliquen, Julie</creatorcontrib><creatorcontrib>Fabre, Bruno</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><title>Dual bandgap operation of a GaAs/Si photoelectrode</title><title>Solar energy materials and solar cells</title><description>The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes.
A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted]
•High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Dual bandgap</subject><subject>GaAs/Si photoelectrode</subject><subject>III-V semiconductors on silicon</subject><subject>Light absorption</subject><subject>Materials Science</subject><subject>Photoelectrochemistry</subject><subject>Physics</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKv_wMNePew2b5Im2YtQqm2FBQ_qOaT5sCnbZknWgv_eLSsePQ0MMwPzIHQPuAIMfLavcmwPuq8IJqQCIEDlBZqAFHVJaS0v0QTXRJSYMHmNbnLeY4wJp2yCyNOXboutPtpP3RWxc0n3IR6L6AtdrPUiz95C0e1iH13rTJ-idbfoyus2u7tfnaKP1fP7clM2r-uX5aIpDZW8Lz21TjDGfC3k3HoL1ktG3RxzTmDLrOaEOtiCBPBiUCI1m5vaEkGZMYLQKXoYd3e6VV0KB52-VdRBbRaNOnuY1pwLwCcYsmzMmhRzTs7_FQCrMyO1VyMjdWakRkZD7XGsueHHKbiksgnuaJwNaXirbAz_D_wA6IFvSQ</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Piriyev, Mekan</creator><creator>Loget, Gabriel</creator><creator>Léger, Yoan</creator><creator>Chen, Lipin</creator><creator>Létoublon, Antoine</creator><creator>Rohel, Tony</creator><creator>Levallois, Christophe</creator><creator>Le Pouliquen, Julie</creator><creator>Fabre, Bruno</creator><creator>Bertru, Nicolas</creator><creator>Cornet, Charles</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0488-7812</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0003-4809-5013</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid></search><sort><creationdate>202303</creationdate><title>Dual bandgap operation of a GaAs/Si photoelectrode</title><author>Piriyev, Mekan ; Loget, Gabriel ; Léger, Yoan ; Chen, Lipin ; Létoublon, Antoine ; Rohel, Tony ; Levallois, Christophe ; Le Pouliquen, Julie ; Fabre, Bruno ; Bertru, Nicolas ; Cornet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-f3de7444f9785dfd1df843e506621b4da623e1b1811f71b128a45c9d2734cc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Dual bandgap</topic><topic>GaAs/Si photoelectrode</topic><topic>III-V semiconductors on silicon</topic><topic>Light absorption</topic><topic>Materials Science</topic><topic>Photoelectrochemistry</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piriyev, Mekan</creatorcontrib><creatorcontrib>Loget, Gabriel</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Le Pouliquen, Julie</creatorcontrib><creatorcontrib>Fabre, Bruno</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piriyev, Mekan</au><au>Loget, Gabriel</au><au>Léger, Yoan</au><au>Chen, Lipin</au><au>Létoublon, Antoine</au><au>Rohel, Tony</au><au>Levallois, Christophe</au><au>Le Pouliquen, Julie</au><au>Fabre, Bruno</au><au>Bertru, Nicolas</au><au>Cornet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual bandgap operation of a GaAs/Si photoelectrode</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2023-03</date><risdate>2023</risdate><volume>251</volume><spage>112138</spage><pages>112138-</pages><artnum>112138</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The development of high-efficiency photoelectrodes at low manufacturing cost is of great interest for the production of renewable and green hydrogen through solar-driven water splitting. In this work, we use structural, optical, and photoelectrochemical characterizations to study the performance of unprotected epitaxial GaAs/Si photoelectrodes during photocorrosion. More specifically, we demonstrate that photoanodes including 1-μm thick GaAs epitaxially grown thin film on a low-cost Si substrate can produce a higher photocurrent than those measured for expensive commercial GaAs wafers. Based on photoelectrochemical experiments under monochromatic excitation, we show that the improved photocurrent has to be related to the dual-bandgap operation of the GaAs/Si photoelectrode, benefiting from both GaAs and Si photo-generated carriers. This result opens new possibilities to further design efficient and low-cost dual-bandgap photoelectrodes.
A dual bandgap photoelectrode operation is demonstrated with GaAs thin films grown on Si. The III-V/Si photoelectrode is able to generate a larger photocurrent than a conventional photoelectrode made of a commercial GaAs substrate, due to the fact that de Si is photoactive. [Display omitted]
•High photocurrents can be generated within cost-efficient GaAs/Si photoelectrodes.•Improved photocurrent performances are related to the Si substrate which is found to be photoactive and contributes to the photo-response of the GaAs/Si photoelectrode.•The concept of dual-bandgap III-V/Si single photoelectrode enables high efficiency and cost efficient photoelectrodes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.112138</doi><orcidid>https://orcid.org/0000-0002-0488-7812</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0003-4809-5013</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2023-03, Vol.251, p.112138, Article 112138 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03966710v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Catalysis Chemical Sciences Condensed Matter Dual bandgap GaAs/Si photoelectrode III-V semiconductors on silicon Light absorption Materials Science Photoelectrochemistry Physics |
title | Dual bandgap operation of a GaAs/Si photoelectrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20bandgap%20operation%20of%20a%20GaAs/Si%20photoelectrode&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Piriyev,%20Mekan&rft.date=2023-03&rft.volume=251&rft.spage=112138&rft.pages=112138-&rft.artnum=112138&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.112138&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03966710v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927024822005554&rfr_iscdi=true |