Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up
We present experiments on large air cavities spanning a wide range of sizes relative to the Hinze scale $d_{H}$, the scale at which turbulent stresses are balanced by surface tension, disintegrating in turbulence. For cavities with initial sizes $d_0$ much larger than $d_{H}$ (probing up to $d_0/d_{...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2022-11, Vol.951, Article A32 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 951 |
creator | Ruth, Daniel J. Aiyer, Aditya K. Rivière, Aliénor Perrard, Stéphane Deike, Luc |
description | We present experiments on large air cavities spanning a wide range of sizes relative to the Hinze scale $d_{H}$, the scale at which turbulent stresses are balanced by surface tension, disintegrating in turbulence. For cavities with initial sizes $d_0$ much larger than $d_{H}$ (probing up to $d_0/d_{H} = 8.3$), the size distribution of bubbles smaller than $d_{H}$ follows $N(d) \propto d^{-3/2}$, with $d$ the bubble diameter. The capillary instability of ligaments involved in the deformation of the large bubbles is shown visually to be responsible for the creation of the small bubbles. Turning to dynamical, three-dimensional measurements of individual break-up events, we describe the break-up child size distribution and the number of child bubbles formed as a function of $d_0/d_{H}$. Then, to model the evolution of a population of bubbles produced by turbulent bubble break-up, we propose a population balance framework in which break-up involves two physical processes: an inertial deformation to the parent bubble that sets the size of large child bubbles, and a capillary instability that sets the size of small child bubbles. A Monte Carlo approach is used to construct the child size distribution, with simulated stochastic break-ups constrained by our experimental measurements and the understanding of the role of capillarity in small bubble production. This approach reproduces the experimental time evolution of the bubble size distribution during the disintegration of large air cavities in turbulence. |
doi_str_mv | 10.1017/jfm.2022.604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03965970v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_604</cupid><sourcerecordid>2733239070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fb85f075852da02c594b1ea835c47d54580759cc26c908ac684f84798e8bba663</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWP_c_AABT4JbJ9lkkxxLqVYoeNFzSLLZunW7W5Pdon56U1r14mngzW8e8x5CVwTGBIi4W1XrMQVKxwWwIzQirFCZKBg_RiNIckYIhVN0FuMKgOSgxAi52cfGh3rt2940uLPRh63p666N2LQlXnelb5q6XeKuwnGw2bxuvzy2g7WNx5vQlYPb0dh-4n4IdmiS0c_aBm_esmFzgU4q00R_eZjn6OV-9jydZ4unh8fpZJG5XLA-q6zkFQguOS0NUMcVs8QbmXPHRMkZl2mpnKOFUyCNKySrJBNKemmtKYr8HN3sfV9NozcplAmfujO1nk8WeqdBrgquBGxJYq_3bMrwPvjY61U3hDa9p6nIc5orEJCo2z3lQhdj8NWvLQG9q1ynyvWucp0qT_j4gJu1DXW59H-u_x58A_ijgxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733239070</pqid></control><display><type>article</type><title>Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up</title><source>Cambridge University Press Journals Complete</source><creator>Ruth, Daniel J. ; Aiyer, Aditya K. ; Rivière, Aliénor ; Perrard, Stéphane ; Deike, Luc</creator><creatorcontrib>Ruth, Daniel J. ; Aiyer, Aditya K. ; Rivière, Aliénor ; Perrard, Stéphane ; Deike, Luc</creatorcontrib><description>We present experiments on large air cavities spanning a wide range of sizes relative to the Hinze scale $d_{H}$, the scale at which turbulent stresses are balanced by surface tension, disintegrating in turbulence. For cavities with initial sizes $d_0$ much larger than $d_{H}$ (probing up to $d_0/d_{H} = 8.3$), the size distribution of bubbles smaller than $d_{H}$ follows $N(d) \propto d^{-3/2}$, with $d$ the bubble diameter. The capillary instability of ligaments involved in the deformation of the large bubbles is shown visually to be responsible for the creation of the small bubbles. Turning to dynamical, three-dimensional measurements of individual break-up events, we describe the break-up child size distribution and the number of child bubbles formed as a function of $d_0/d_{H}$. Then, to model the evolution of a population of bubbles produced by turbulent bubble break-up, we propose a population balance framework in which break-up involves two physical processes: an inertial deformation to the parent bubble that sets the size of large child bubbles, and a capillary instability that sets the size of small child bubbles. A Monte Carlo approach is used to construct the child size distribution, with simulated stochastic break-ups constrained by our experimental measurements and the understanding of the role of capillarity in small bubble production. This approach reproduces the experimental time evolution of the bubble size distribution during the disintegration of large air cavities in turbulence.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.604</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bubbles ; Capillarity ; Cavities ; Deformation ; Diameters ; Dimensional measurement ; Disintegration ; Engineering Sciences ; Evolution ; Experiments ; JFM Papers ; Reynolds number ; Size distribution ; Statistical methods ; Stochasticity ; Surface tension ; Turbulence ; Velocity</subject><ispartof>Journal of fluid mechanics, 2022-11, Vol.951, Article A32</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-fb85f075852da02c594b1ea835c47d54580759cc26c908ac684f84798e8bba663</citedby><cites>FETCH-LOGICAL-c374t-fb85f075852da02c594b1ea835c47d54580759cc26c908ac684f84798e8bba663</cites><orcidid>0000-0002-9315-2892 ; 0000-0002-5658-0759 ; 0000-0002-3764-4227 ; 0000-0002-4644-9909 ; 0000-0001-8163-8564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022006048/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03965970$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruth, Daniel J.</creatorcontrib><creatorcontrib>Aiyer, Aditya K.</creatorcontrib><creatorcontrib>Rivière, Aliénor</creatorcontrib><creatorcontrib>Perrard, Stéphane</creatorcontrib><creatorcontrib>Deike, Luc</creatorcontrib><title>Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present experiments on large air cavities spanning a wide range of sizes relative to the Hinze scale $d_{H}$, the scale at which turbulent stresses are balanced by surface tension, disintegrating in turbulence. For cavities with initial sizes $d_0$ much larger than $d_{H}$ (probing up to $d_0/d_{H} = 8.3$), the size distribution of bubbles smaller than $d_{H}$ follows $N(d) \propto d^{-3/2}$, with $d$ the bubble diameter. The capillary instability of ligaments involved in the deformation of the large bubbles is shown visually to be responsible for the creation of the small bubbles. Turning to dynamical, three-dimensional measurements of individual break-up events, we describe the break-up child size distribution and the number of child bubbles formed as a function of $d_0/d_{H}$. Then, to model the evolution of a population of bubbles produced by turbulent bubble break-up, we propose a population balance framework in which break-up involves two physical processes: an inertial deformation to the parent bubble that sets the size of large child bubbles, and a capillary instability that sets the size of small child bubbles. A Monte Carlo approach is used to construct the child size distribution, with simulated stochastic break-ups constrained by our experimental measurements and the understanding of the role of capillarity in small bubble production. This approach reproduces the experimental time evolution of the bubble size distribution during the disintegration of large air cavities in turbulence.</description><subject>Bubbles</subject><subject>Capillarity</subject><subject>Cavities</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Dimensional measurement</subject><subject>Disintegration</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Experiments</subject><subject>JFM Papers</subject><subject>Reynolds number</subject><subject>Size distribution</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><subject>Surface tension</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9LAzEQxYMoWP_c_AABT4JbJ9lkkxxLqVYoeNFzSLLZunW7W5Pdon56U1r14mngzW8e8x5CVwTGBIi4W1XrMQVKxwWwIzQirFCZKBg_RiNIckYIhVN0FuMKgOSgxAi52cfGh3rt2940uLPRh63p666N2LQlXnelb5q6XeKuwnGw2bxuvzy2g7WNx5vQlYPb0dh-4n4IdmiS0c_aBm_esmFzgU4q00R_eZjn6OV-9jydZ4unh8fpZJG5XLA-q6zkFQguOS0NUMcVs8QbmXPHRMkZl2mpnKOFUyCNKySrJBNKemmtKYr8HN3sfV9NozcplAmfujO1nk8WeqdBrgquBGxJYq_3bMrwPvjY61U3hDa9p6nIc5orEJCo2z3lQhdj8NWvLQG9q1ynyvWucp0qT_j4gJu1DXW59H-u_x58A_ijgxY</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Ruth, Daniel J.</creator><creator>Aiyer, Aditya K.</creator><creator>Rivière, Aliénor</creator><creator>Perrard, Stéphane</creator><creator>Deike, Luc</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9315-2892</orcidid><orcidid>https://orcid.org/0000-0002-5658-0759</orcidid><orcidid>https://orcid.org/0000-0002-3764-4227</orcidid><orcidid>https://orcid.org/0000-0002-4644-9909</orcidid><orcidid>https://orcid.org/0000-0001-8163-8564</orcidid></search><sort><creationdate>20221125</creationdate><title>Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up</title><author>Ruth, Daniel J. ; Aiyer, Aditya K. ; Rivière, Aliénor ; Perrard, Stéphane ; Deike, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fb85f075852da02c594b1ea835c47d54580759cc26c908ac684f84798e8bba663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bubbles</topic><topic>Capillarity</topic><topic>Cavities</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Dimensional measurement</topic><topic>Disintegration</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Experiments</topic><topic>JFM Papers</topic><topic>Reynolds number</topic><topic>Size distribution</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><topic>Surface tension</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruth, Daniel J.</creatorcontrib><creatorcontrib>Aiyer, Aditya K.</creatorcontrib><creatorcontrib>Rivière, Aliénor</creatorcontrib><creatorcontrib>Perrard, Stéphane</creatorcontrib><creatorcontrib>Deike, Luc</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruth, Daniel J.</au><au>Aiyer, Aditya K.</au><au>Rivière, Aliénor</au><au>Perrard, Stéphane</au><au>Deike, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-11-25</date><risdate>2022</risdate><volume>951</volume><artnum>A32</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We present experiments on large air cavities spanning a wide range of sizes relative to the Hinze scale $d_{H}$, the scale at which turbulent stresses are balanced by surface tension, disintegrating in turbulence. For cavities with initial sizes $d_0$ much larger than $d_{H}$ (probing up to $d_0/d_{H} = 8.3$), the size distribution of bubbles smaller than $d_{H}$ follows $N(d) \propto d^{-3/2}$, with $d$ the bubble diameter. The capillary instability of ligaments involved in the deformation of the large bubbles is shown visually to be responsible for the creation of the small bubbles. Turning to dynamical, three-dimensional measurements of individual break-up events, we describe the break-up child size distribution and the number of child bubbles formed as a function of $d_0/d_{H}$. Then, to model the evolution of a population of bubbles produced by turbulent bubble break-up, we propose a population balance framework in which break-up involves two physical processes: an inertial deformation to the parent bubble that sets the size of large child bubbles, and a capillary instability that sets the size of small child bubbles. A Monte Carlo approach is used to construct the child size distribution, with simulated stochastic break-ups constrained by our experimental measurements and the understanding of the role of capillarity in small bubble production. This approach reproduces the experimental time evolution of the bubble size distribution during the disintegration of large air cavities in turbulence.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.604</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-9315-2892</orcidid><orcidid>https://orcid.org/0000-0002-5658-0759</orcidid><orcidid>https://orcid.org/0000-0002-3764-4227</orcidid><orcidid>https://orcid.org/0000-0002-4644-9909</orcidid><orcidid>https://orcid.org/0000-0001-8163-8564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2022-11, Vol.951, Article A32 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03965970v1 |
source | Cambridge University Press Journals Complete |
subjects | Bubbles Capillarity Cavities Deformation Diameters Dimensional measurement Disintegration Engineering Sciences Evolution Experiments JFM Papers Reynolds number Size distribution Statistical methods Stochasticity Surface tension Turbulence Velocity |
title | Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20observations%20and%20modelling%20of%20sub-Hinze%20bubble%20production%20by%20turbulent%20bubble%20break-up&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ruth,%20Daniel%20J.&rft.date=2022-11-25&rft.volume=951&rft.artnum=A32&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.604&rft_dat=%3Cproquest_hal_p%3E2733239070%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733239070&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_604&rfr_iscdi=true |