Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment
In this paper we study the Casimir energy of a sample made by N cavities, with N ≫ 1 , across the transition from the metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which the layers constituting the cavities are made b...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2022-07, Vol.137 (7), p.826, Article 826 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 826 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Allocca, Annalisa Avino, Saverio Balestrieri, Sergio Calloni, Enrico Caprara, Sergio Carpinelli, Massimo D’Onofrio, Luca D’Urso, Domenico De Rosa, Rosario Errico, Luciano Gagliardi, Gianluca Grilli, Marco Mangano, Valentina Marsella, Maria Naticchioni, Luca Pasqualetti, Antonio Pepe, Giovanni Piero Perciballi, Maurizio Pesenti, Luca Puppo, Paola Rapagnani, Piero Ricci, Fulvio Rosa, Luigi Rovelli, Carlo Rozza, Davide Ruggi, Paolo Saini, Naurang Sequino, Valeria Sipala, Valeria Stornaiuolo, Daniela Tafuri, Francesco Tagliacozzo, Arturo Tosta e Melo, Iara Trozzo, Lucia |
description | In this paper we study the Casimir energy of a sample made by
N
cavities, with
N
≫
1
, across the transition from the metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which the layers constituting the cavities are made by dielectric and for the configuration in which the layers are made by plasma sheets, we concentrate our analysis on the latter. It represents the final step towards the macroscopical characterisation of a “multi-cavity” (with
N
large) necessary to fully understand the behaviour of the Casimir energy of a YBCO (or a GdBCO) sample across the transition. Our analysis is especially useful to the Archimedes experiment, aimed at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. To this purpose, we aim at modulating the Casimir energy of a layered structure, the multi-cavity, by inducing a transition from the metallic to the superconducting phase. After having characterised the Casimir energy of such a structure for both the metallic and the superconducting phase, we give an estimate of the modulation of the energy across the transition. |
doi_str_mv | 10.1140/epjp/s13360-022-03025-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03963049v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919912421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-d3a2960c334f6ac1f8be14f4875b2257c7145e69a0ccccc6dfeda707e785224c3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRSMEEhX0G7DEhi5C_UpcsysRtEgV3cCCleU6kzZV88BOKsrX4zQI2DGbGY3OvbbmBsEVwbeEcDyGeluPHWEsxiGmNMQM0ygUJ8GAEonDiHN--mc-D4bObbEvLgmXfBB8JtrlRW4RlGDXB5RVFj0j19ZgTVWmrWnyco2M3udNDu4OaVRUKeyOXLMB9HafLNHNLPVthJwu6h2gpkIrQK2DFOXlkZpas8kLSMEh-PDWfi6by-As0zsHw-9-Ebw-Prwk83CxnD0l00VoOBFNmDJNZYwNYzyLtSHZZAWEZ3wiohWlkTCC8AhiqbHpKk4zSLXAAsQkopQbdhGMet-N3qnav63tQVU6V_PpQnU7zGTM_EX2xLPXPVvb6r0F16ht1drSf09RSaQklNOOEj1lbOWchezHlmDV5aK6XFSfi_K5qGMuSnjlpFc6ryjXYH_9_5N-ARSEkug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919912421</pqid></control><display><type>article</type><title>Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Allocca, Annalisa ; Avino, Saverio ; Balestrieri, Sergio ; Calloni, Enrico ; Caprara, Sergio ; Carpinelli, Massimo ; D’Onofrio, Luca ; D’Urso, Domenico ; De Rosa, Rosario ; Errico, Luciano ; Gagliardi, Gianluca ; Grilli, Marco ; Mangano, Valentina ; Marsella, Maria ; Naticchioni, Luca ; Pasqualetti, Antonio ; Pepe, Giovanni Piero ; Perciballi, Maurizio ; Pesenti, Luca ; Puppo, Paola ; Rapagnani, Piero ; Ricci, Fulvio ; Rosa, Luigi ; Rovelli, Carlo ; Rozza, Davide ; Ruggi, Paolo ; Saini, Naurang ; Sequino, Valeria ; Sipala, Valeria ; Stornaiuolo, Daniela ; Tafuri, Francesco ; Tagliacozzo, Arturo ; Tosta e Melo, Iara ; Trozzo, Lucia</creator><creatorcontrib>Allocca, Annalisa ; Avino, Saverio ; Balestrieri, Sergio ; Calloni, Enrico ; Caprara, Sergio ; Carpinelli, Massimo ; D’Onofrio, Luca ; D’Urso, Domenico ; De Rosa, Rosario ; Errico, Luciano ; Gagliardi, Gianluca ; Grilli, Marco ; Mangano, Valentina ; Marsella, Maria ; Naticchioni, Luca ; Pasqualetti, Antonio ; Pepe, Giovanni Piero ; Perciballi, Maurizio ; Pesenti, Luca ; Puppo, Paola ; Rapagnani, Piero ; Ricci, Fulvio ; Rosa, Luigi ; Rovelli, Carlo ; Rozza, Davide ; Ruggi, Paolo ; Saini, Naurang ; Sequino, Valeria ; Sipala, Valeria ; Stornaiuolo, Daniela ; Tafuri, Francesco ; Tagliacozzo, Arturo ; Tosta e Melo, Iara ; Trozzo, Lucia</creatorcontrib><description>In this paper we study the Casimir energy of a sample made by
N
cavities, with
N
≫
1
, across the transition from the metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which the layers constituting the cavities are made by dielectric and for the configuration in which the layers are made by plasma sheets, we concentrate our analysis on the latter. It represents the final step towards the macroscopical characterisation of a “multi-cavity” (with
N
large) necessary to fully understand the behaviour of the Casimir energy of a YBCO (or a GdBCO) sample across the transition. Our analysis is especially useful to the Archimedes experiment, aimed at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. To this purpose, we aim at modulating the Casimir energy of a layered structure, the multi-cavity, by inducing a transition from the metallic to the superconducting phase. After having characterised the Casimir energy of such a structure for both the metallic and the superconducting phase, we give an estimate of the modulation of the energy across the transition.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03025-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Configurations ; Energy ; Gravitational fields ; High Energy Physics - Theory ; Holes ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Plasma ; Quantum field theory ; Quantum Physics ; Regular Article ; Superconductivity ; Theoretical ; Yang-Mills theory ; YBCO superconductors</subject><ispartof>European physical journal plus, 2022-07, Vol.137 (7), p.826, Article 826</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-d3a2960c334f6ac1f8be14f4875b2257c7145e69a0ccccc6dfeda707e785224c3</citedby><cites>FETCH-LOGICAL-c417t-d3a2960c334f6ac1f8be14f4875b2257c7145e69a0ccccc6dfeda707e785224c3</cites><orcidid>0000-0002-5595-5037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03025-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919912421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03963049$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Allocca, Annalisa</creatorcontrib><creatorcontrib>Avino, Saverio</creatorcontrib><creatorcontrib>Balestrieri, Sergio</creatorcontrib><creatorcontrib>Calloni, Enrico</creatorcontrib><creatorcontrib>Caprara, Sergio</creatorcontrib><creatorcontrib>Carpinelli, Massimo</creatorcontrib><creatorcontrib>D’Onofrio, Luca</creatorcontrib><creatorcontrib>D’Urso, Domenico</creatorcontrib><creatorcontrib>De Rosa, Rosario</creatorcontrib><creatorcontrib>Errico, Luciano</creatorcontrib><creatorcontrib>Gagliardi, Gianluca</creatorcontrib><creatorcontrib>Grilli, Marco</creatorcontrib><creatorcontrib>Mangano, Valentina</creatorcontrib><creatorcontrib>Marsella, Maria</creatorcontrib><creatorcontrib>Naticchioni, Luca</creatorcontrib><creatorcontrib>Pasqualetti, Antonio</creatorcontrib><creatorcontrib>Pepe, Giovanni Piero</creatorcontrib><creatorcontrib>Perciballi, Maurizio</creatorcontrib><creatorcontrib>Pesenti, Luca</creatorcontrib><creatorcontrib>Puppo, Paola</creatorcontrib><creatorcontrib>Rapagnani, Piero</creatorcontrib><creatorcontrib>Ricci, Fulvio</creatorcontrib><creatorcontrib>Rosa, Luigi</creatorcontrib><creatorcontrib>Rovelli, Carlo</creatorcontrib><creatorcontrib>Rozza, Davide</creatorcontrib><creatorcontrib>Ruggi, Paolo</creatorcontrib><creatorcontrib>Saini, Naurang</creatorcontrib><creatorcontrib>Sequino, Valeria</creatorcontrib><creatorcontrib>Sipala, Valeria</creatorcontrib><creatorcontrib>Stornaiuolo, Daniela</creatorcontrib><creatorcontrib>Tafuri, Francesco</creatorcontrib><creatorcontrib>Tagliacozzo, Arturo</creatorcontrib><creatorcontrib>Tosta e Melo, Iara</creatorcontrib><creatorcontrib>Trozzo, Lucia</creatorcontrib><title>Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper we study the Casimir energy of a sample made by
N
cavities, with
N
≫
1
, across the transition from the metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which the layers constituting the cavities are made by dielectric and for the configuration in which the layers are made by plasma sheets, we concentrate our analysis on the latter. It represents the final step towards the macroscopical characterisation of a “multi-cavity” (with
N
large) necessary to fully understand the behaviour of the Casimir energy of a YBCO (or a GdBCO) sample across the transition. Our analysis is especially useful to the Archimedes experiment, aimed at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. To this purpose, we aim at modulating the Casimir energy of a layered structure, the multi-cavity, by inducing a transition from the metallic to the superconducting phase. After having characterised the Casimir energy of such a structure for both the metallic and the superconducting phase, we give an estimate of the modulation of the energy across the transition.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Configurations</subject><subject>Energy</subject><subject>Gravitational fields</subject><subject>High Energy Physics - Theory</subject><subject>Holes</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Quantum field theory</subject><subject>Quantum Physics</subject><subject>Regular Article</subject><subject>Superconductivity</subject><subject>Theoretical</subject><subject>Yang-Mills theory</subject><subject>YBCO superconductors</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkctOwzAQRSMEEhX0G7DEhi5C_UpcsysRtEgV3cCCleU6kzZV88BOKsrX4zQI2DGbGY3OvbbmBsEVwbeEcDyGeluPHWEsxiGmNMQM0ygUJ8GAEonDiHN--mc-D4bObbEvLgmXfBB8JtrlRW4RlGDXB5RVFj0j19ZgTVWmrWnyco2M3udNDu4OaVRUKeyOXLMB9HafLNHNLPVthJwu6h2gpkIrQK2DFOXlkZpas8kLSMEh-PDWfi6by-As0zsHw-9-Ebw-Prwk83CxnD0l00VoOBFNmDJNZYwNYzyLtSHZZAWEZ3wiohWlkTCC8AhiqbHpKk4zSLXAAsQkopQbdhGMet-N3qnav63tQVU6V_PpQnU7zGTM_EX2xLPXPVvb6r0F16ht1drSf09RSaQklNOOEj1lbOWchezHlmDV5aK6XFSfi_K5qGMuSnjlpFc6ryjXYH_9_5N-ARSEkug</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Allocca, Annalisa</creator><creator>Avino, Saverio</creator><creator>Balestrieri, Sergio</creator><creator>Calloni, Enrico</creator><creator>Caprara, Sergio</creator><creator>Carpinelli, Massimo</creator><creator>D’Onofrio, Luca</creator><creator>D’Urso, Domenico</creator><creator>De Rosa, Rosario</creator><creator>Errico, Luciano</creator><creator>Gagliardi, Gianluca</creator><creator>Grilli, Marco</creator><creator>Mangano, Valentina</creator><creator>Marsella, Maria</creator><creator>Naticchioni, Luca</creator><creator>Pasqualetti, Antonio</creator><creator>Pepe, Giovanni Piero</creator><creator>Perciballi, Maurizio</creator><creator>Pesenti, Luca</creator><creator>Puppo, Paola</creator><creator>Rapagnani, Piero</creator><creator>Ricci, Fulvio</creator><creator>Rosa, Luigi</creator><creator>Rovelli, Carlo</creator><creator>Rozza, Davide</creator><creator>Ruggi, Paolo</creator><creator>Saini, Naurang</creator><creator>Sequino, Valeria</creator><creator>Sipala, Valeria</creator><creator>Stornaiuolo, Daniela</creator><creator>Tafuri, Francesco</creator><creator>Tagliacozzo, Arturo</creator><creator>Tosta e Melo, Iara</creator><creator>Trozzo, Lucia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5595-5037</orcidid></search><sort><creationdate>20220701</creationdate><title>Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment</title><author>Allocca, Annalisa ; Avino, Saverio ; Balestrieri, Sergio ; Calloni, Enrico ; Caprara, Sergio ; Carpinelli, Massimo ; D’Onofrio, Luca ; D’Urso, Domenico ; De Rosa, Rosario ; Errico, Luciano ; Gagliardi, Gianluca ; Grilli, Marco ; Mangano, Valentina ; Marsella, Maria ; Naticchioni, Luca ; Pasqualetti, Antonio ; Pepe, Giovanni Piero ; Perciballi, Maurizio ; Pesenti, Luca ; Puppo, Paola ; Rapagnani, Piero ; Ricci, Fulvio ; Rosa, Luigi ; Rovelli, Carlo ; Rozza, Davide ; Ruggi, Paolo ; Saini, Naurang ; Sequino, Valeria ; Sipala, Valeria ; Stornaiuolo, Daniela ; Tafuri, Francesco ; Tagliacozzo, Arturo ; Tosta e Melo, Iara ; Trozzo, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-d3a2960c334f6ac1f8be14f4875b2257c7145e69a0ccccc6dfeda707e785224c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Configurations</topic><topic>Energy</topic><topic>Gravitational fields</topic><topic>High Energy Physics - Theory</topic><topic>Holes</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Quantum field theory</topic><topic>Quantum Physics</topic><topic>Regular Article</topic><topic>Superconductivity</topic><topic>Theoretical</topic><topic>Yang-Mills theory</topic><topic>YBCO superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allocca, Annalisa</creatorcontrib><creatorcontrib>Avino, Saverio</creatorcontrib><creatorcontrib>Balestrieri, Sergio</creatorcontrib><creatorcontrib>Calloni, Enrico</creatorcontrib><creatorcontrib>Caprara, Sergio</creatorcontrib><creatorcontrib>Carpinelli, Massimo</creatorcontrib><creatorcontrib>D’Onofrio, Luca</creatorcontrib><creatorcontrib>D’Urso, Domenico</creatorcontrib><creatorcontrib>De Rosa, Rosario</creatorcontrib><creatorcontrib>Errico, Luciano</creatorcontrib><creatorcontrib>Gagliardi, Gianluca</creatorcontrib><creatorcontrib>Grilli, Marco</creatorcontrib><creatorcontrib>Mangano, Valentina</creatorcontrib><creatorcontrib>Marsella, Maria</creatorcontrib><creatorcontrib>Naticchioni, Luca</creatorcontrib><creatorcontrib>Pasqualetti, Antonio</creatorcontrib><creatorcontrib>Pepe, Giovanni Piero</creatorcontrib><creatorcontrib>Perciballi, Maurizio</creatorcontrib><creatorcontrib>Pesenti, Luca</creatorcontrib><creatorcontrib>Puppo, Paola</creatorcontrib><creatorcontrib>Rapagnani, Piero</creatorcontrib><creatorcontrib>Ricci, Fulvio</creatorcontrib><creatorcontrib>Rosa, Luigi</creatorcontrib><creatorcontrib>Rovelli, Carlo</creatorcontrib><creatorcontrib>Rozza, Davide</creatorcontrib><creatorcontrib>Ruggi, Paolo</creatorcontrib><creatorcontrib>Saini, Naurang</creatorcontrib><creatorcontrib>Sequino, Valeria</creatorcontrib><creatorcontrib>Sipala, Valeria</creatorcontrib><creatorcontrib>Stornaiuolo, Daniela</creatorcontrib><creatorcontrib>Tafuri, Francesco</creatorcontrib><creatorcontrib>Tagliacozzo, Arturo</creatorcontrib><creatorcontrib>Tosta e Melo, Iara</creatorcontrib><creatorcontrib>Trozzo, Lucia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allocca, Annalisa</au><au>Avino, Saverio</au><au>Balestrieri, Sergio</au><au>Calloni, Enrico</au><au>Caprara, Sergio</au><au>Carpinelli, Massimo</au><au>D’Onofrio, Luca</au><au>D’Urso, Domenico</au><au>De Rosa, Rosario</au><au>Errico, Luciano</au><au>Gagliardi, Gianluca</au><au>Grilli, Marco</au><au>Mangano, Valentina</au><au>Marsella, Maria</au><au>Naticchioni, Luca</au><au>Pasqualetti, Antonio</au><au>Pepe, Giovanni Piero</au><au>Perciballi, Maurizio</au><au>Pesenti, Luca</au><au>Puppo, Paola</au><au>Rapagnani, Piero</au><au>Ricci, Fulvio</au><au>Rosa, Luigi</au><au>Rovelli, Carlo</au><au>Rozza, Davide</au><au>Ruggi, Paolo</au><au>Saini, Naurang</au><au>Sequino, Valeria</au><au>Sipala, Valeria</au><au>Stornaiuolo, Daniela</au><au>Tafuri, Francesco</au><au>Tagliacozzo, Arturo</au><au>Tosta e Melo, Iara</au><au>Trozzo, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>137</volume><issue>7</issue><spage>826</spage><pages>826-</pages><artnum>826</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper we study the Casimir energy of a sample made by
N
cavities, with
N
≫
1
, across the transition from the metallic to the superconducting phase of the constituting plates. After having characterised the energy for the configuration in which the layers constituting the cavities are made by dielectric and for the configuration in which the layers are made by plasma sheets, we concentrate our analysis on the latter. It represents the final step towards the macroscopical characterisation of a “multi-cavity” (with
N
large) necessary to fully understand the behaviour of the Casimir energy of a YBCO (or a GdBCO) sample across the transition. Our analysis is especially useful to the Archimedes experiment, aimed at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. To this purpose, we aim at modulating the Casimir energy of a layered structure, the multi-cavity, by inducing a transition from the metallic to the superconducting phase. After having characterised the Casimir energy of such a structure for both the metallic and the superconducting phase, we give an estimate of the modulation of the energy across the transition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03025-7</doi><orcidid>https://orcid.org/0000-0002-5595-5037</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-07, Vol.137 (7), p.826, Article 826 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03963049v1 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applied and Technical Physics Atomic Boundary conditions Complex Systems Condensed Matter Physics Configurations Energy Gravitational fields High Energy Physics - Theory Holes Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase transitions Physics Physics and Astronomy Plasma Quantum field theory Quantum Physics Regular Article Superconductivity Theoretical Yang-Mills theory YBCO superconductors |
title | Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Casimir%20energy%20for%20N%20superconducting%20cavities:%20a%20model%20for%20the%20YBCO%20(GdBCO)%20sample%20to%20be%20used%20in%20the%20Archimedes%20experiment&rft.jtitle=European%20physical%20journal%20plus&rft.au=Allocca,%20Annalisa&rft.date=2022-07-01&rft.volume=137&rft.issue=7&rft.spage=826&rft.pages=826-&rft.artnum=826&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03025-7&rft_dat=%3Cproquest_hal_p%3E2919912421%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919912421&rft_id=info:pmid/&rfr_iscdi=true |