Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS 2 and AgInS 2 /ZnS Quantum Dots

Continuous flow synthesis of semiconductor quantum dots (QDs) holds the promise of being highly reproducible, being scalable, and providing precise control of all reaction parameters. Here, we applied this technique to the aqueous synthesis of the Ag–In–S (AIS) core and AIS/ZnS core/shell QDs and op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-12, Vol.126 (48), p.20524-20534
Hauptverfasser: Rivaux, Céline, Akdas, Tugce, Yadav, Ranjana, El-Dahshan, Omar, Moodelly, Davina, Ling, Wai Li, Aldakov, Dmitry, Reiss, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20534
container_issue 48
container_start_page 20524
container_title Journal of physical chemistry. C
container_volume 126
creator Rivaux, Céline
Akdas, Tugce
Yadav, Ranjana
El-Dahshan, Omar
Moodelly, Davina
Ling, Wai Li
Aldakov, Dmitry
Reiss, Peter
description Continuous flow synthesis of semiconductor quantum dots (QDs) holds the promise of being highly reproducible, being scalable, and providing precise control of all reaction parameters. Here, we applied this technique to the aqueous synthesis of the Ag–In–S (AIS) core and AIS/ZnS core/shell QDs and optimized several parameters comprising reaction temperature, pressure, time, nature, and the ratio of precursors. Photoluminescence quantum yield (PLQY) values of 32%/44% (average/best) for the core and 77%/83% for the core/shell system have been obtained in short reaction times (8–15 min). We demonstrate by means of combined structural and optical studies that the high PLQY originates from donor–acceptor pair recombination processes, involving essentially [In$_{Ag}$$^{2+}$ + 2V$_{Ag}$$^–$] defect complexes whose formation is favored by the large excess of indium used (In:Ag ratio of 4:1), and the low reaction temperature (100–120 °C). The structural disorder is further enhanced during ZnS shell growth, which in addition to surface passivation and removal of nonradiative decay channels leads to the partial diffusion of the added zinc ions into the AIS core and the formation of ZnIn− antisite defects. The presented method provides excellent reproducibility and high scalability, facilitating the large-scale production of highly luminescent AIS/ZnS QDs.
doi_str_mv 10.1021/acs.jpcc.2c06849
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03959494v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03959494v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1221-ca42444c0b18e44c504daf728c933294b932cf3d88e2fabff9c03035fc2a2fe23</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvHvfqIe3sR2z2GOpHCwGR6kWQZTvdbVPS3ZpNlP73JrT09N4Mb4bHj5B7BiMGnI0NxtF2jzjiCI-ZVBdkwJTgyUSm6eXZy8k1uYlxC5AKYGJAvqfBN6VvQxvpSxX-aP7T2n5YHHyzsbGMNDg6K9eb6kCLdld6G9H6hubruV9QTo1fnf34q5P31vim3dGn0MRbcuVMFe3dSYfk8-X5YzpLirfX-TQvEmScswSN5FJKhCXLbKcpyJVxE56hEoIruezKoxOrLLPcmaVzCkGASB1yw53lYkgejn83ptL7utyZ-qCDKfUsL3S_A6FSJZX8ZV0WjlmsQ4y1decDBrpHqTuUukepTyjFPxESZ7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS 2 and AgInS 2 /ZnS Quantum Dots</title><source>American Chemical Society Journals</source><creator>Rivaux, Céline ; Akdas, Tugce ; Yadav, Ranjana ; El-Dahshan, Omar ; Moodelly, Davina ; Ling, Wai Li ; Aldakov, Dmitry ; Reiss, Peter</creator><creatorcontrib>Rivaux, Céline ; Akdas, Tugce ; Yadav, Ranjana ; El-Dahshan, Omar ; Moodelly, Davina ; Ling, Wai Li ; Aldakov, Dmitry ; Reiss, Peter</creatorcontrib><description>Continuous flow synthesis of semiconductor quantum dots (QDs) holds the promise of being highly reproducible, being scalable, and providing precise control of all reaction parameters. Here, we applied this technique to the aqueous synthesis of the Ag–In–S (AIS) core and AIS/ZnS core/shell QDs and optimized several parameters comprising reaction temperature, pressure, time, nature, and the ratio of precursors. Photoluminescence quantum yield (PLQY) values of 32%/44% (average/best) for the core and 77%/83% for the core/shell system have been obtained in short reaction times (8–15 min). We demonstrate by means of combined structural and optical studies that the high PLQY originates from donor–acceptor pair recombination processes, involving essentially [In$_{Ag}$$^{2+}$ + 2V$_{Ag}$$^–$] defect complexes whose formation is favored by the large excess of indium used (In:Ag ratio of 4:1), and the low reaction temperature (100–120 °C). The structural disorder is further enhanced during ZnS shell growth, which in addition to surface passivation and removal of nonradiative decay channels leads to the partial diffusion of the added zinc ions into the AIS core and the formation of ZnIn− antisite defects. The presented method provides excellent reproducibility and high scalability, facilitating the large-scale production of highly luminescent AIS/ZnS QDs.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c06849</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Life Sciences</subject><ispartof>Journal of physical chemistry. C, 2022-12, Vol.126 (48), p.20524-20534</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1221-ca42444c0b18e44c504daf728c933294b932cf3d88e2fabff9c03035fc2a2fe23</citedby><cites>FETCH-LOGICAL-c1221-ca42444c0b18e44c504daf728c933294b932cf3d88e2fabff9c03035fc2a2fe23</cites><orcidid>0000-0002-9563-238X ; 0000-0001-8095-0281 ; 0000-0002-4264-5750 ; 0000-0002-4581-2462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2752,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03959494$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivaux, Céline</creatorcontrib><creatorcontrib>Akdas, Tugce</creatorcontrib><creatorcontrib>Yadav, Ranjana</creatorcontrib><creatorcontrib>El-Dahshan, Omar</creatorcontrib><creatorcontrib>Moodelly, Davina</creatorcontrib><creatorcontrib>Ling, Wai Li</creatorcontrib><creatorcontrib>Aldakov, Dmitry</creatorcontrib><creatorcontrib>Reiss, Peter</creatorcontrib><title>Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS 2 and AgInS 2 /ZnS Quantum Dots</title><title>Journal of physical chemistry. C</title><description>Continuous flow synthesis of semiconductor quantum dots (QDs) holds the promise of being highly reproducible, being scalable, and providing precise control of all reaction parameters. Here, we applied this technique to the aqueous synthesis of the Ag–In–S (AIS) core and AIS/ZnS core/shell QDs and optimized several parameters comprising reaction temperature, pressure, time, nature, and the ratio of precursors. Photoluminescence quantum yield (PLQY) values of 32%/44% (average/best) for the core and 77%/83% for the core/shell system have been obtained in short reaction times (8–15 min). We demonstrate by means of combined structural and optical studies that the high PLQY originates from donor–acceptor pair recombination processes, involving essentially [In$_{Ag}$$^{2+}$ + 2V$_{Ag}$$^–$] defect complexes whose formation is favored by the large excess of indium used (In:Ag ratio of 4:1), and the low reaction temperature (100–120 °C). The structural disorder is further enhanced during ZnS shell growth, which in addition to surface passivation and removal of nonradiative decay channels leads to the partial diffusion of the added zinc ions into the AIS core and the formation of ZnIn− antisite defects. The presented method provides excellent reproducibility and high scalability, facilitating the large-scale production of highly luminescent AIS/ZnS QDs.</description><subject>Life Sciences</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFbvHvfqIe3sR2z2GOpHCwGR6kWQZTvdbVPS3ZpNlP73JrT09N4Mb4bHj5B7BiMGnI0NxtF2jzjiCI-ZVBdkwJTgyUSm6eXZy8k1uYlxC5AKYGJAvqfBN6VvQxvpSxX-aP7T2n5YHHyzsbGMNDg6K9eb6kCLdld6G9H6hubruV9QTo1fnf34q5P31vim3dGn0MRbcuVMFe3dSYfk8-X5YzpLirfX-TQvEmScswSN5FJKhCXLbKcpyJVxE56hEoIruezKoxOrLLPcmaVzCkGASB1yw53lYkgejn83ptL7utyZ-qCDKfUsL3S_A6FSJZX8ZV0WjlmsQ4y1decDBrpHqTuUukepTyjFPxESZ7o</recordid><startdate>20221208</startdate><enddate>20221208</enddate><creator>Rivaux, Céline</creator><creator>Akdas, Tugce</creator><creator>Yadav, Ranjana</creator><creator>El-Dahshan, Omar</creator><creator>Moodelly, Davina</creator><creator>Ling, Wai Li</creator><creator>Aldakov, Dmitry</creator><creator>Reiss, Peter</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9563-238X</orcidid><orcidid>https://orcid.org/0000-0001-8095-0281</orcidid><orcidid>https://orcid.org/0000-0002-4264-5750</orcidid><orcidid>https://orcid.org/0000-0002-4581-2462</orcidid></search><sort><creationdate>20221208</creationdate><title>Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS 2 and AgInS 2 /ZnS Quantum Dots</title><author>Rivaux, Céline ; Akdas, Tugce ; Yadav, Ranjana ; El-Dahshan, Omar ; Moodelly, Davina ; Ling, Wai Li ; Aldakov, Dmitry ; Reiss, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1221-ca42444c0b18e44c504daf728c933294b932cf3d88e2fabff9c03035fc2a2fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivaux, Céline</creatorcontrib><creatorcontrib>Akdas, Tugce</creatorcontrib><creatorcontrib>Yadav, Ranjana</creatorcontrib><creatorcontrib>El-Dahshan, Omar</creatorcontrib><creatorcontrib>Moodelly, Davina</creatorcontrib><creatorcontrib>Ling, Wai Li</creatorcontrib><creatorcontrib>Aldakov, Dmitry</creatorcontrib><creatorcontrib>Reiss, Peter</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivaux, Céline</au><au>Akdas, Tugce</au><au>Yadav, Ranjana</au><au>El-Dahshan, Omar</au><au>Moodelly, Davina</au><au>Ling, Wai Li</au><au>Aldakov, Dmitry</au><au>Reiss, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS 2 and AgInS 2 /ZnS Quantum Dots</atitle><jtitle>Journal of physical chemistry. C</jtitle><date>2022-12-08</date><risdate>2022</risdate><volume>126</volume><issue>48</issue><spage>20524</spage><epage>20534</epage><pages>20524-20534</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Continuous flow synthesis of semiconductor quantum dots (QDs) holds the promise of being highly reproducible, being scalable, and providing precise control of all reaction parameters. Here, we applied this technique to the aqueous synthesis of the Ag–In–S (AIS) core and AIS/ZnS core/shell QDs and optimized several parameters comprising reaction temperature, pressure, time, nature, and the ratio of precursors. Photoluminescence quantum yield (PLQY) values of 32%/44% (average/best) for the core and 77%/83% for the core/shell system have been obtained in short reaction times (8–15 min). We demonstrate by means of combined structural and optical studies that the high PLQY originates from donor–acceptor pair recombination processes, involving essentially [In$_{Ag}$$^{2+}$ + 2V$_{Ag}$$^–$] defect complexes whose formation is favored by the large excess of indium used (In:Ag ratio of 4:1), and the low reaction temperature (100–120 °C). The structural disorder is further enhanced during ZnS shell growth, which in addition to surface passivation and removal of nonradiative decay channels leads to the partial diffusion of the added zinc ions into the AIS core and the formation of ZnIn− antisite defects. The presented method provides excellent reproducibility and high scalability, facilitating the large-scale production of highly luminescent AIS/ZnS QDs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c06849</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9563-238X</orcidid><orcidid>https://orcid.org/0000-0001-8095-0281</orcidid><orcidid>https://orcid.org/0000-0002-4264-5750</orcidid><orcidid>https://orcid.org/0000-0002-4581-2462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-12, Vol.126 (48), p.20524-20534
issn 1932-7447
1932-7455
language eng
recordid cdi_hal_primary_oai_HAL_hal_03959494v1
source American Chemical Society Journals
subjects Life Sciences
title Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS 2 and AgInS 2 /ZnS Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Flow%20Aqueous%20Synthesis%20of%20Highly%20Luminescent%20AgInS%202%20and%20AgInS%202%20/ZnS%20Quantum%20Dots&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Rivaux,%20C%C3%A9line&rft.date=2022-12-08&rft.volume=126&rft.issue=48&rft.spage=20524&rft.epage=20534&rft.pages=20524-20534&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c06849&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03959494v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true