OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses

The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3 ) by • OH radicals, leading to Met-OH • adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural chemistry 2020-04, Vol.31 (2), p.719-730
Hauptverfasser: Bergès, Jacqueline, Domin, Dominik, Pilmé, Julien, Braïda, Benoît, Houée-Levin, Chantal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 2
container_start_page 719
container_title Structural chemistry
container_volume 31
creator Bergès, Jacqueline
Domin, Dominik
Pilmé, Julien
Braïda, Benoît
Houée-Levin, Chantal
description The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3 ) by • OH radicals, leading to Met-OH • adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the same procedure that we used for the oxidation of dimethyl sulfide as reported by Domin et al. (J Phys Chem B, 121:9321), discrete water molecules, as well as relative positions, of the • OH radical to Met were taken from molecular dynamics calculations. The presence of water molecules strongly modifies the relative energies of Met-OH adducts and cations when water is properly modeled. Depending on the terminal functional groups and on the position of the • OH radical, several stable structures were found; however, the most stable radical is the N-centered or the S∴N radical cation. QTAIM analysis and valence bond (VB) treatment allowed for the characterization of the 2c∴3e nature of S∴N and S∴OH bonds. VB analysis estimated the probability of the heterolytic rupture of the • OH adduct that is modified by the presence of water molecules. Graphical abstract Oxidation of amino acid methionine by • OH radicals in the presence of discrete water molecules.
doi_str_mv 10.1007/s11224-019-01438-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03956671v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2373643909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-29d4b9687c4fec75a605f2808dd8f6c03700dc31271a9d82b47c55e87d0fc9613</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoqKt_wFPAk2B1krRN423xa4UVEdZzyCZTt9Jt1qTrx783a0VvHoaZzDzvS-Al5IjBGQOQ55ExzvMMmEqViyrjW2SPFZJnCoBtpxlyyFLBLtmP8SUtWSmKPdI-TKj_aJzpG99RX9Ml9os0Nh3SpqP9AukqYMTO4ubqmmgD9kjfTY-BLn2Ldt1ivKBXN7NT-jgb391T0zn6Ztpvzdynh-lM-xkxHpCd2rQRD3_6iDzdXM8uJ9n04fbucjzNrFCyz7hy-VyVlbR5jVYWpoSi5hVUzlV1aUFIAGcF45IZ5So-z6UtCqykg9qqkokRORl8F6bVq9AsTfjU3jR6Mp7qzQ6EKspSsrcNezywq-Bf1xh7_eLXIX04ai6kKHOhQCWKD5QNPsaA9a8tA71JQA8J6JSA_k4gqUdEDKKY4O4Zw5_1P6ovoQuG9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373643909</pqid></control><display><type>article</type><title>OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses</title><source>Springer Nature - Complete Springer Journals</source><creator>Bergès, Jacqueline ; Domin, Dominik ; Pilmé, Julien ; Braïda, Benoît ; Houée-Levin, Chantal</creator><creatorcontrib>Bergès, Jacqueline ; Domin, Dominik ; Pilmé, Julien ; Braïda, Benoît ; Houée-Levin, Chantal</creatorcontrib><description>The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3 ) by • OH radicals, leading to Met-OH • adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the same procedure that we used for the oxidation of dimethyl sulfide as reported by Domin et al. (J Phys Chem B, 121:9321), discrete water molecules, as well as relative positions, of the • OH radical to Met were taken from molecular dynamics calculations. The presence of water molecules strongly modifies the relative energies of Met-OH adducts and cations when water is properly modeled. Depending on the terminal functional groups and on the position of the • OH radical, several stable structures were found; however, the most stable radical is the N-centered or the S∴N radical cation. QTAIM analysis and valence bond (VB) treatment allowed for the characterization of the 2c∴3e nature of S∴N and S∴OH bonds. VB analysis estimated the probability of the heterolytic rupture of the • OH adduct that is modified by the presence of water molecules. Graphical abstract Oxidation of amino acid methionine by • OH radicals in the presence of discrete water molecules.</description><identifier>ISSN: 1040-0400</identifier><identifier>EISSN: 1572-9001</identifier><identifier>DOI: 10.1007/s11224-019-01438-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adducts ; Aqueous environments ; Cations ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Computer Applications in Chemistry ; Density functional theory ; Dimethyl sulfide ; Functional groups ; Methionine ; Molecular dynamics ; Original Research ; Oxidation ; Physical Chemistry ; Theoretical and Computational Chemistry ; Water chemistry</subject><ispartof>Structural chemistry, 2020-04, Vol.31 (2), p.719-730</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-29d4b9687c4fec75a605f2808dd8f6c03700dc31271a9d82b47c55e87d0fc9613</citedby><cites>FETCH-LOGICAL-c397t-29d4b9687c4fec75a605f2808dd8f6c03700dc31271a9d82b47c55e87d0fc9613</cites><orcidid>0000-0003-3725-3215 ; 0000-0003-0421-4930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11224-019-01438-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11224-019-01438-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03956671$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergès, Jacqueline</creatorcontrib><creatorcontrib>Domin, Dominik</creatorcontrib><creatorcontrib>Pilmé, Julien</creatorcontrib><creatorcontrib>Braïda, Benoît</creatorcontrib><creatorcontrib>Houée-Levin, Chantal</creatorcontrib><title>OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses</title><title>Structural chemistry</title><addtitle>Struct Chem</addtitle><description>The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3 ) by • OH radicals, leading to Met-OH • adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the same procedure that we used for the oxidation of dimethyl sulfide as reported by Domin et al. (J Phys Chem B, 121:9321), discrete water molecules, as well as relative positions, of the • OH radical to Met were taken from molecular dynamics calculations. The presence of water molecules strongly modifies the relative energies of Met-OH adducts and cations when water is properly modeled. Depending on the terminal functional groups and on the position of the • OH radical, several stable structures were found; however, the most stable radical is the N-centered or the S∴N radical cation. QTAIM analysis and valence bond (VB) treatment allowed for the characterization of the 2c∴3e nature of S∴N and S∴OH bonds. VB analysis estimated the probability of the heterolytic rupture of the • OH adduct that is modified by the presence of water molecules. Graphical abstract Oxidation of amino acid methionine by • OH radicals in the presence of discrete water molecules.</description><subject>Adducts</subject><subject>Aqueous environments</subject><subject>Cations</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Applications in Chemistry</subject><subject>Density functional theory</subject><subject>Dimethyl sulfide</subject><subject>Functional groups</subject><subject>Methionine</subject><subject>Molecular dynamics</subject><subject>Original Research</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><subject>Water chemistry</subject><issn>1040-0400</issn><issn>1572-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMoqKt_wFPAk2B1krRN423xa4UVEdZzyCZTt9Jt1qTrx783a0VvHoaZzDzvS-Al5IjBGQOQ55ExzvMMmEqViyrjW2SPFZJnCoBtpxlyyFLBLtmP8SUtWSmKPdI-TKj_aJzpG99RX9Ml9os0Nh3SpqP9AukqYMTO4ubqmmgD9kjfTY-BLn2Ldt1ivKBXN7NT-jgb391T0zn6Ztpvzdynh-lM-xkxHpCd2rQRD3_6iDzdXM8uJ9n04fbucjzNrFCyz7hy-VyVlbR5jVYWpoSi5hVUzlV1aUFIAGcF45IZ5So-z6UtCqykg9qqkokRORl8F6bVq9AsTfjU3jR6Mp7qzQ6EKspSsrcNezywq-Bf1xh7_eLXIX04ai6kKHOhQCWKD5QNPsaA9a8tA71JQA8J6JSA_k4gqUdEDKKY4O4Zw5_1P6ovoQuG9Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bergès, Jacqueline</creator><creator>Domin, Dominik</creator><creator>Pilmé, Julien</creator><creator>Braïda, Benoît</creator><creator>Houée-Levin, Chantal</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3725-3215</orcidid><orcidid>https://orcid.org/0000-0003-0421-4930</orcidid></search><sort><creationdate>20200401</creationdate><title>OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses</title><author>Bergès, Jacqueline ; Domin, Dominik ; Pilmé, Julien ; Braïda, Benoît ; Houée-Levin, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-29d4b9687c4fec75a605f2808dd8f6c03700dc31271a9d82b47c55e87d0fc9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adducts</topic><topic>Aqueous environments</topic><topic>Cations</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Applications in Chemistry</topic><topic>Density functional theory</topic><topic>Dimethyl sulfide</topic><topic>Functional groups</topic><topic>Methionine</topic><topic>Molecular dynamics</topic><topic>Original Research</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergès, Jacqueline</creatorcontrib><creatorcontrib>Domin, Dominik</creatorcontrib><creatorcontrib>Pilmé, Julien</creatorcontrib><creatorcontrib>Braïda, Benoît</creatorcontrib><creatorcontrib>Houée-Levin, Chantal</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Structural chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergès, Jacqueline</au><au>Domin, Dominik</au><au>Pilmé, Julien</au><au>Braïda, Benoît</au><au>Houée-Levin, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses</atitle><jtitle>Structural chemistry</jtitle><stitle>Struct Chem</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>719</spage><epage>730</epage><pages>719-730</pages><issn>1040-0400</issn><eissn>1572-9001</eissn><abstract>The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3 ) by • OH radicals, leading to Met-OH • adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the same procedure that we used for the oxidation of dimethyl sulfide as reported by Domin et al. (J Phys Chem B, 121:9321), discrete water molecules, as well as relative positions, of the • OH radical to Met were taken from molecular dynamics calculations. The presence of water molecules strongly modifies the relative energies of Met-OH adducts and cations when water is properly modeled. Depending on the terminal functional groups and on the position of the • OH radical, several stable structures were found; however, the most stable radical is the N-centered or the S∴N radical cation. QTAIM analysis and valence bond (VB) treatment allowed for the characterization of the 2c∴3e nature of S∴N and S∴OH bonds. VB analysis estimated the probability of the heterolytic rupture of the • OH adduct that is modified by the presence of water molecules. Graphical abstract Oxidation of amino acid methionine by • OH radicals in the presence of discrete water molecules.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11224-019-01438-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3725-3215</orcidid><orcidid>https://orcid.org/0000-0003-0421-4930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-0400
ispartof Structural chemistry, 2020-04, Vol.31 (2), p.719-730
issn 1040-0400
1572-9001
language eng
recordid cdi_hal_primary_oai_HAL_hal_03956671v1
source Springer Nature - Complete Springer Journals
subjects Adducts
Aqueous environments
Cations
Chemical Sciences
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Density functional theory
Dimethyl sulfide
Functional groups
Methionine
Molecular dynamics
Original Research
Oxidation
Physical Chemistry
Theoretical and Computational Chemistry
Water chemistry
title OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OH%20oxidation%20of%20methionine%20in%20the%20presence%20of%20discrete%20water%20molecules:%20DFT,%20QTAIM%20and%20valence%20bond%20analyses&rft.jtitle=Structural%20chemistry&rft.au=Berg%C3%A8s,%20Jacqueline&rft.date=2020-04-01&rft.volume=31&rft.issue=2&rft.spage=719&rft.epage=730&rft.pages=719-730&rft.issn=1040-0400&rft.eissn=1572-9001&rft_id=info:doi/10.1007/s11224-019-01438-2&rft_dat=%3Cproquest_hal_p%3E2373643909%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2373643909&rft_id=info:pmid/&rfr_iscdi=true