Random‐like properties of chaotic forcing

We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2022-10, Vol.106 (3), p.2804-2845
Hauptverfasser: Giulietti, Paolo, Marmi, Stefano, Tanzi, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2845
container_issue 3
container_start_page 2804
container_title Journal of the London Mathematical Society
container_volume 106
creator Giulietti, Paolo
Marmi, Stefano
Tanzi, Matteo
description We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.
doi_str_mv 10.1112/jlms.12649
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03953344v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3029-8e89b4fa77bb3957248bd28c744f3b05e619e7ce2bbdccb9870261ba0516aa283</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbn2C2KlPvTTKTybIUa5URwZ91SNKMTZ02JSlKdz6Cz-iT2Dri0tWBw3fO4iPkFGGAiPRy3i7SAGnJ5R7pIS9lLkQB-6QHQHleIohDcpTSHAAZAu2Riwe9nIbF18dn619dtoph5eLau5SFJrMzHdbeZk2I1i9fjslBo9vkTn6zT57HV0-jSV7fX9-MhnVuGVCZV66ShjdaCGOYLATllZnSygrOG2agcCVKJ6yjxkytNbISQEs0GgostaYV65Oz7nemW7WKfqHjRgXt1WRYq10H21vGOH_DLXvesTaGlKJr_gYIaqdE7ZSoHyVbGDv43bdu8w-pbuu7x27zDfHFY2o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random‐like properties of chaotic forcing</title><source>Access via Wiley Online Library</source><creator>Giulietti, Paolo ; Marmi, Stefano ; Tanzi, Matteo</creator><creatorcontrib>Giulietti, Paolo ; Marmi, Stefano ; Tanzi, Matteo</creatorcontrib><description>We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12649</identifier><language>eng</language><publisher>London Mathematical Society ; Wiley</publisher><subject>Mathematics</subject><ispartof>Journal of the London Mathematical Society, 2022-10, Vol.106 (3), p.2804-2845</ispartof><rights>2022 The Authors. is copyright © London Mathematical Society.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3029-8e89b4fa77bb3957248bd28c744f3b05e619e7ce2bbdccb9870261ba0516aa283</cites><orcidid>0000-0001-5105-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12649$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12649$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03953344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Marmi, Stefano</creatorcontrib><creatorcontrib>Tanzi, Matteo</creatorcontrib><title>Random‐like properties of chaotic forcing</title><title>Journal of the London Mathematical Society</title><description>We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.</description><subject>Mathematics</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1KAzEUhYMoWKsbn2C2KlPvTTKTybIUa5URwZ91SNKMTZ02JSlKdz6Cz-iT2Dri0tWBw3fO4iPkFGGAiPRy3i7SAGnJ5R7pIS9lLkQB-6QHQHleIohDcpTSHAAZAu2Riwe9nIbF18dn619dtoph5eLau5SFJrMzHdbeZk2I1i9fjslBo9vkTn6zT57HV0-jSV7fX9-MhnVuGVCZV66ShjdaCGOYLATllZnSygrOG2agcCVKJ6yjxkytNbISQEs0GgostaYV65Oz7nemW7WKfqHjRgXt1WRYq10H21vGOH_DLXvesTaGlKJr_gYIaqdE7ZSoHyVbGDv43bdu8w-pbuu7x27zDfHFY2o</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Giulietti, Paolo</creator><creator>Marmi, Stefano</creator><creator>Tanzi, Matteo</creator><general>London Mathematical Society ; Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5105-8876</orcidid></search><sort><creationdate>202210</creationdate><title>Random‐like properties of chaotic forcing</title><author>Giulietti, Paolo ; Marmi, Stefano ; Tanzi, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3029-8e89b4fa77bb3957248bd28c744f3b05e619e7ce2bbdccb9870261ba0516aa283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Marmi, Stefano</creatorcontrib><creatorcontrib>Tanzi, Matteo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giulietti, Paolo</au><au>Marmi, Stefano</au><au>Tanzi, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random‐like properties of chaotic forcing</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2022-10</date><risdate>2022</risdate><volume>106</volume><issue>3</issue><spage>2804</spage><epage>2845</epage><pages>2804-2845</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.</abstract><pub>London Mathematical Society ; Wiley</pub><doi>10.1112/jlms.12649</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0001-5105-8876</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2022-10, Vol.106 (3), p.2804-2845
issn 0024-6107
1469-7750
language eng
recordid cdi_hal_primary_oai_HAL_hal_03953344v1
source Access via Wiley Online Library
subjects Mathematics
title Random‐like properties of chaotic forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%E2%80%90like%20properties%20of%20chaotic%20forcing&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Giulietti,%20Paolo&rft.date=2022-10&rft.volume=106&rft.issue=3&rft.spage=2804&rft.epage=2845&rft.pages=2804-2845&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12649&rft_dat=%3Cwiley_hal_p%3EJLMS12649%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true