Random‐like properties of chaotic forcing
We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behavi...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2022-10, Vol.106 (3), p.2804-2845 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2845 |
---|---|
container_issue | 3 |
container_start_page | 2804 |
container_title | Journal of the London Mathematical Society |
container_volume | 106 |
creator | Giulietti, Paolo Marmi, Stefano Tanzi, Matteo |
description | We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show. |
doi_str_mv | 10.1112/jlms.12649 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03953344v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3029-8e89b4fa77bb3957248bd28c744f3b05e619e7ce2bbdccb9870261ba0516aa283</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbn2C2KlPvTTKTybIUa5URwZ91SNKMTZ02JSlKdz6Cz-iT2Dri0tWBw3fO4iPkFGGAiPRy3i7SAGnJ5R7pIS9lLkQB-6QHQHleIohDcpTSHAAZAu2Riwe9nIbF18dn619dtoph5eLau5SFJrMzHdbeZk2I1i9fjslBo9vkTn6zT57HV0-jSV7fX9-MhnVuGVCZV66ShjdaCGOYLATllZnSygrOG2agcCVKJ6yjxkytNbISQEs0GgostaYV65Oz7nemW7WKfqHjRgXt1WRYq10H21vGOH_DLXvesTaGlKJr_gYIaqdE7ZSoHyVbGDv43bdu8w-pbuu7x27zDfHFY2o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random‐like properties of chaotic forcing</title><source>Access via Wiley Online Library</source><creator>Giulietti, Paolo ; Marmi, Stefano ; Tanzi, Matteo</creator><creatorcontrib>Giulietti, Paolo ; Marmi, Stefano ; Tanzi, Matteo</creatorcontrib><description>We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12649</identifier><language>eng</language><publisher>London Mathematical Society ; Wiley</publisher><subject>Mathematics</subject><ispartof>Journal of the London Mathematical Society, 2022-10, Vol.106 (3), p.2804-2845</ispartof><rights>2022 The Authors. is copyright © London Mathematical Society.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3029-8e89b4fa77bb3957248bd28c744f3b05e619e7ce2bbdccb9870261ba0516aa283</cites><orcidid>0000-0001-5105-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12649$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12649$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03953344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Marmi, Stefano</creatorcontrib><creatorcontrib>Tanzi, Matteo</creatorcontrib><title>Random‐like properties of chaotic forcing</title><title>Journal of the London Mathematical Society</title><description>We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.</description><subject>Mathematics</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1KAzEUhYMoWKsbn2C2KlPvTTKTybIUa5URwZ91SNKMTZ02JSlKdz6Cz-iT2Dri0tWBw3fO4iPkFGGAiPRy3i7SAGnJ5R7pIS9lLkQB-6QHQHleIohDcpTSHAAZAu2Riwe9nIbF18dn619dtoph5eLau5SFJrMzHdbeZk2I1i9fjslBo9vkTn6zT57HV0-jSV7fX9-MhnVuGVCZV66ShjdaCGOYLATllZnSygrOG2agcCVKJ6yjxkytNbISQEs0GgostaYV65Oz7nemW7WKfqHjRgXt1WRYq10H21vGOH_DLXvesTaGlKJr_gYIaqdE7ZSoHyVbGDv43bdu8w-pbuu7x27zDfHFY2o</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Giulietti, Paolo</creator><creator>Marmi, Stefano</creator><creator>Tanzi, Matteo</creator><general>London Mathematical Society ; Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5105-8876</orcidid></search><sort><creationdate>202210</creationdate><title>Random‐like properties of chaotic forcing</title><author>Giulietti, Paolo ; Marmi, Stefano ; Tanzi, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3029-8e89b4fa77bb3957248bd28c744f3b05e619e7ce2bbdccb9870261ba0516aa283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Marmi, Stefano</creatorcontrib><creatorcontrib>Tanzi, Matteo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giulietti, Paolo</au><au>Marmi, Stefano</au><au>Tanzi, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random‐like properties of chaotic forcing</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2022-10</date><risdate>2022</risdate><volume>106</volume><issue>3</issue><spage>2804</spage><epage>2845</epage><pages>2804-2845</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We prove that skew systems with a sufficiently expanding base have approximate exponential decay of correlations, meaning that the exponential rate is observed modulo an error. The fiber maps are only assumed to be Lipschitz regular and to depend on the base in a way that guarantees diffusive behaviour on the vertical component. The assumptions do not imply an hyperbolic picture and one cannot rely on the spectral properties of the transfer operators involved. The approximate nature of the result is the inevitable price one pays for having so mild assumptions on the dynamics on the vertical component. However, the error in the approximation goes to zero when the expansion of the base tends to infinity. The result can be applied beyond the original setup when combined with acceleration or conjugation arguments, as our examples show.</abstract><pub>London Mathematical Society ; Wiley</pub><doi>10.1112/jlms.12649</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0001-5105-8876</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2022-10, Vol.106 (3), p.2804-2845 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03953344v1 |
source | Access via Wiley Online Library |
subjects | Mathematics |
title | Random‐like properties of chaotic forcing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%E2%80%90like%20properties%20of%20chaotic%20forcing&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Giulietti,%20Paolo&rft.date=2022-10&rft.volume=106&rft.issue=3&rft.spage=2804&rft.epage=2845&rft.pages=2804-2845&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12649&rft_dat=%3Cwiley_hal_p%3EJLMS12649%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |