Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device
Recent developments in quantum hardware and quantum algorithms have made it possible to utilize the capabilities of current noisy intermediate-scale quantum devices for addressing problems in quantum chemistry and condensed matter physics. Here we report a demonstration of solving the dynamical mean...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2023-04, Vol.107 (16), Article 165155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Physical review. B |
container_volume | 107 |
creator | Backes, Steffen Murakami, Yuta Sakai, Shiro Arita, Ryotaro |
description | Recent developments in quantum hardware and quantum algorithms have made it possible to utilize the capabilities of current noisy intermediate-scale quantum devices for addressing problems in quantum chemistry and condensed matter physics. Here we report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki, including self-consistency of the DMFT equations. This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions. The problem involves both fermionic and bosonic degrees of freedom to be encoded on the quantum device, which we solve using a recently proposed Krylov variational quantum algorithm to obtain the impurity Green's function. We find the resulting spectral function to be in good agreement with the exact result, exhibiting both correlation and plasmonic satellites and significantly surpassing the accuracy of standard Trotter-expansion approaches. Our results provide an essential building block to study electronic correlations and plasmonic excitations on future quantum computers with modern ab initio techniques. |
doi_str_mv | 10.1103/PhysRevB.107.165155 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03946686v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03946686v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-3cd1a087c28e1fef70bbe12bf7aa19e28f9f7f7241ef65a94f8b93fd52676163</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpE3DxlUOKN07s-FjKT5AqQKh3a5Os1aAkhjiplLenVaGnnR3NzOFj7BbEEkDI-4_dFD5p_7AEoZegUkjTCzaLE2UiY5S5POtUXLNFCF9CCFDCaGFm7O1x6rCtS2x4S9hFrqam4sOOfD9x5_uj5PlYFNhXUe6bMFDd8dZX1HDfceQ_I3bD2PKK9nVJN-zKYRNo8XfnbPv8tF3n0eb95XW92kRlnMkhkmUFKDJ9-AgcOS2KgiAunEYEQ3HmjNNOxwmQUymaxGWFka5KY6UVKDlnd6fZHTb2u69b7Cfrsbb5amOPnpAmUSpTezhk5Slb9j6Enty5AMIeAdp_gAdD2xNA-QsW4mV2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device</title><source>American Physical Society Journals</source><creator>Backes, Steffen ; Murakami, Yuta ; Sakai, Shiro ; Arita, Ryotaro</creator><creatorcontrib>Backes, Steffen ; Murakami, Yuta ; Sakai, Shiro ; Arita, Ryotaro</creatorcontrib><description>Recent developments in quantum hardware and quantum algorithms have made it possible to utilize the capabilities of current noisy intermediate-scale quantum devices for addressing problems in quantum chemistry and condensed matter physics. Here we report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki, including self-consistency of the DMFT equations. This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions. The problem involves both fermionic and bosonic degrees of freedom to be encoded on the quantum device, which we solve using a recently proposed Krylov variational quantum algorithm to obtain the impurity Green's function. We find the resulting spectral function to be in good agreement with the exact result, exhibiting both correlation and plasmonic satellites and significantly surpassing the accuracy of standard Trotter-expansion approaches. Our results provide an essential building block to study electronic correlations and plasmonic excitations on future quantum computers with modern ab initio techniques.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.107.165155</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Physics ; Quantum Physics</subject><ispartof>Physical review. B, 2023-04, Vol.107 (16), Article 165155</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-3cd1a087c28e1fef70bbe12bf7aa19e28f9f7f7241ef65a94f8b93fd52676163</citedby><cites>FETCH-LOGICAL-c283t-3cd1a087c28e1fef70bbe12bf7aa19e28f9f7f7241ef65a94f8b93fd52676163</cites><orcidid>0000-0001-5725-072X ; 0000-0001-5200-0019 ; 0000-0002-7761-7098 ; 0000-0001-5495-3884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03946686$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Backes, Steffen</creatorcontrib><creatorcontrib>Murakami, Yuta</creatorcontrib><creatorcontrib>Sakai, Shiro</creatorcontrib><creatorcontrib>Arita, Ryotaro</creatorcontrib><title>Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device</title><title>Physical review. B</title><description>Recent developments in quantum hardware and quantum algorithms have made it possible to utilize the capabilities of current noisy intermediate-scale quantum devices for addressing problems in quantum chemistry and condensed matter physics. Here we report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki, including self-consistency of the DMFT equations. This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions. The problem involves both fermionic and bosonic degrees of freedom to be encoded on the quantum device, which we solve using a recently proposed Krylov variational quantum algorithm to obtain the impurity Green's function. We find the resulting spectral function to be in good agreement with the exact result, exhibiting both correlation and plasmonic satellites and significantly surpassing the accuracy of standard Trotter-expansion approaches. Our results provide an essential building block to study electronic correlations and plasmonic excitations on future quantum computers with modern ab initio techniques.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Physics</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpE3DxlUOKN07s-FjKT5AqQKh3a5Os1aAkhjiplLenVaGnnR3NzOFj7BbEEkDI-4_dFD5p_7AEoZegUkjTCzaLE2UiY5S5POtUXLNFCF9CCFDCaGFm7O1x6rCtS2x4S9hFrqam4sOOfD9x5_uj5PlYFNhXUe6bMFDd8dZX1HDfceQ_I3bD2PKK9nVJN-zKYRNo8XfnbPv8tF3n0eb95XW92kRlnMkhkmUFKDJ9-AgcOS2KgiAunEYEQ3HmjNNOxwmQUymaxGWFka5KY6UVKDlnd6fZHTb2u69b7Cfrsbb5amOPnpAmUSpTezhk5Slb9j6Enty5AMIeAdp_gAdD2xNA-QsW4mV2</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Backes, Steffen</creator><creator>Murakami, Yuta</creator><creator>Sakai, Shiro</creator><creator>Arita, Ryotaro</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5725-072X</orcidid><orcidid>https://orcid.org/0000-0001-5200-0019</orcidid><orcidid>https://orcid.org/0000-0002-7761-7098</orcidid><orcidid>https://orcid.org/0000-0001-5495-3884</orcidid></search><sort><creationdate>20230427</creationdate><title>Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device</title><author>Backes, Steffen ; Murakami, Yuta ; Sakai, Shiro ; Arita, Ryotaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-3cd1a087c28e1fef70bbe12bf7aa19e28f9f7f7241ef65a94f8b93fd52676163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backes, Steffen</creatorcontrib><creatorcontrib>Murakami, Yuta</creatorcontrib><creatorcontrib>Sakai, Shiro</creatorcontrib><creatorcontrib>Arita, Ryotaro</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backes, Steffen</au><au>Murakami, Yuta</au><au>Sakai, Shiro</au><au>Arita, Ryotaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device</atitle><jtitle>Physical review. B</jtitle><date>2023-04-27</date><risdate>2023</risdate><volume>107</volume><issue>16</issue><artnum>165155</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Recent developments in quantum hardware and quantum algorithms have made it possible to utilize the capabilities of current noisy intermediate-scale quantum devices for addressing problems in quantum chemistry and condensed matter physics. Here we report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki, including self-consistency of the DMFT equations. This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions. The problem involves both fermionic and bosonic degrees of freedom to be encoded on the quantum device, which we solve using a recently proposed Krylov variational quantum algorithm to obtain the impurity Green's function. We find the resulting spectral function to be in good agreement with the exact result, exhibiting both correlation and plasmonic satellites and significantly surpassing the accuracy of standard Trotter-expansion approaches. Our results provide an essential building block to study electronic correlations and plasmonic excitations on future quantum computers with modern ab initio techniques.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.107.165155</doi><orcidid>https://orcid.org/0000-0001-5725-072X</orcidid><orcidid>https://orcid.org/0000-0001-5200-0019</orcidid><orcidid>https://orcid.org/0000-0002-7761-7098</orcidid><orcidid>https://orcid.org/0000-0001-5495-3884</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2023-04, Vol.107 (16), Article 165155 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03946686v1 |
source | American Physical Society Journals |
subjects | Condensed Matter Physics Quantum Physics |
title | Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20mean-field%20theory%20for%20the%20Hubbard-Holstein%20model%20on%20a%20quantum%20device&rft.jtitle=Physical%20review.%20B&rft.au=Backes,%20Steffen&rft.date=2023-04-27&rft.volume=107&rft.issue=16&rft.artnum=165155&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.107.165155&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03946686v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |