Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure
Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpos...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2014-06, Vol.119 (6), p.5097-5113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5113 |
---|---|
container_issue | 6 |
container_start_page | 5097 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 119 |
creator | Chanard, K. Avouac, J. P. Ramillien, G. Genrich, J. |
description | Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations.
Key Points
Seasonal deformation in the Himalaya is induced by continental water storage
Seasonal displacements computed for half‐space; layered spherical elastic Earth
Importance of realistic Earth structure to model seasonal displacements |
doi_str_mv | 10.1002/2013JB010451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03938670v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559710595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</originalsourceid><addsrcrecordid>eNqF0s1u1DAQAOAIgURVeuMBLHEBicBM_Jdwa6uyS7WARIvKzfImdtclG7e2syVPwGvjZdEKcSi-2Jr5xh5bLornCG8QoHpbAdLzE0BgHB8VBxWKpmwoF4_3a6RPi6MYbyCPOoeQHRQ_P_rO9G64Jp2xPqx1cn4gbujG1nRkOZFodPSD7slGB_c7G4m3pPVDcoMZUs7c62RCriFpZcjcrXWvJ02Cuc74HbkwQ3TJbVyaSPLkTIe0IqbXMbmWxBTGNo3BPCueWN1Hc_RnPiy-vj-7PJ2Xi8-zD6fHi1JzKaFcopWMV1JyyvgSKmEp1dgi62orwXLOGW0pl9USJNY1WquBUda1orUN1JYeFq92-650r25DbjZMymun5scLtY0BbWgtJGww25c7exv83WhiUmsXW9P3ejB-jAoFqyhmLv9POW8kAm94pi_-oTd-DPmFs2qQypoLZA-qfKwQVNTbDl_vVBt8jMHY_ZUQ1PZXqL9_ReZ0x-9db6YHrTqffTnhIDjkqnJX5WIyP_ZVOnxXQlLJ1dWnmYIrvBCX8psS9Bd-EsVC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642663681</pqid></control><display><type>article</type><title>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chanard, K. ; Avouac, J. P. ; Ramillien, G. ; Genrich, J.</creator><creatorcontrib>Chanard, K. ; Avouac, J. P. ; Ramillien, G. ; Genrich, J.</creatorcontrib><description>Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations.
Key Points
Seasonal deformation in the Himalaya is induced by continental water storage
Seasonal displacements computed for half‐space; layered spherical elastic Earth
Importance of realistic Earth structure to model seasonal displacements</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2013JB010451</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amplitude ; Climate ; Data recovery ; Deformation ; Deformation mechanisms ; Displacement ; Earth ; Earth models ; Earth Sciences ; Earth structure ; Elastic deformation ; Evolution ; geodesy ; Geophysics ; Global positioning systems ; GPS ; GRACE ; Gravitation ; Gravity ; Green's function ; Green's functions ; Half spaces ; Himalaya ; Horizontal ; Mathematical models ; Modelling ; Monsoons ; Satellite data ; Satellite navigation systems ; Satellites ; Sciences of the Universe ; Seasonal variation ; Seasonal variations ; Seismic velocities ; surface hydrology ; tectonics ; Time series ; Velocity ; Vertical orientation ; Water storage</subject><ispartof>Journal of geophysical research. Solid earth, 2014-06, Vol.119 (6), p.5097-5113</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</citedby><cites>FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</cites><orcidid>0000-0002-2463-218X ; 0000-0001-9934-9621 ; 0000-0003-4504-0770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JB010451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JB010451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03938670$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chanard, K.</creatorcontrib><creatorcontrib>Avouac, J. P.</creatorcontrib><creatorcontrib>Ramillien, G.</creatorcontrib><creatorcontrib>Genrich, J.</creatorcontrib><title>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</title><title>Journal of geophysical research. Solid earth</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations.
Key Points
Seasonal deformation in the Himalaya is induced by continental water storage
Seasonal displacements computed for half‐space; layered spherical elastic Earth
Importance of realistic Earth structure to model seasonal displacements</description><subject>Amplitude</subject><subject>Climate</subject><subject>Data recovery</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Displacement</subject><subject>Earth</subject><subject>Earth models</subject><subject>Earth Sciences</subject><subject>Earth structure</subject><subject>Elastic deformation</subject><subject>Evolution</subject><subject>geodesy</subject><subject>Geophysics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GRACE</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Green's function</subject><subject>Green's functions</subject><subject>Half spaces</subject><subject>Himalaya</subject><subject>Horizontal</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Monsoons</subject><subject>Satellite data</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seismic velocities</subject><subject>surface hydrology</subject><subject>tectonics</subject><subject>Time series</subject><subject>Velocity</subject><subject>Vertical orientation</subject><subject>Water storage</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0s1u1DAQAOAIgURVeuMBLHEBicBM_Jdwa6uyS7WARIvKzfImdtclG7e2syVPwGvjZdEKcSi-2Jr5xh5bLornCG8QoHpbAdLzE0BgHB8VBxWKpmwoF4_3a6RPi6MYbyCPOoeQHRQ_P_rO9G64Jp2xPqx1cn4gbujG1nRkOZFodPSD7slGB_c7G4m3pPVDcoMZUs7c62RCriFpZcjcrXWvJ02Cuc74HbkwQ3TJbVyaSPLkTIe0IqbXMbmWxBTGNo3BPCueWN1Hc_RnPiy-vj-7PJ2Xi8-zD6fHi1JzKaFcopWMV1JyyvgSKmEp1dgi62orwXLOGW0pl9USJNY1WquBUda1orUN1JYeFq92-650r25DbjZMymun5scLtY0BbWgtJGww25c7exv83WhiUmsXW9P3ejB-jAoFqyhmLv9POW8kAm94pi_-oTd-DPmFs2qQypoLZA-qfKwQVNTbDl_vVBt8jMHY_ZUQ1PZXqL9_ReZ0x-9db6YHrTqffTnhIDjkqnJX5WIyP_ZVOnxXQlLJ1dWnmYIrvBCX8psS9Bd-EsVC</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Chanard, K.</creator><creator>Avouac, J. P.</creator><creator>Ramillien, G.</creator><creator>Genrich, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2463-218X</orcidid><orcidid>https://orcid.org/0000-0001-9934-9621</orcidid><orcidid>https://orcid.org/0000-0003-4504-0770</orcidid></search><sort><creationdate>201406</creationdate><title>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</title><author>Chanard, K. ; Avouac, J. P. ; Ramillien, G. ; Genrich, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitude</topic><topic>Climate</topic><topic>Data recovery</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Displacement</topic><topic>Earth</topic><topic>Earth models</topic><topic>Earth Sciences</topic><topic>Earth structure</topic><topic>Elastic deformation</topic><topic>Evolution</topic><topic>geodesy</topic><topic>Geophysics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GRACE</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Green's function</topic><topic>Green's functions</topic><topic>Half spaces</topic><topic>Himalaya</topic><topic>Horizontal</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Monsoons</topic><topic>Satellite data</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seismic velocities</topic><topic>surface hydrology</topic><topic>tectonics</topic><topic>Time series</topic><topic>Velocity</topic><topic>Vertical orientation</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chanard, K.</creatorcontrib><creatorcontrib>Avouac, J. P.</creatorcontrib><creatorcontrib>Ramillien, G.</creatorcontrib><creatorcontrib>Genrich, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chanard, K.</au><au>Avouac, J. P.</au><au>Ramillien, G.</au><au>Genrich, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2014-06</date><risdate>2014</risdate><volume>119</volume><issue>6</issue><spage>5097</spage><epage>5113</epage><pages>5097-5113</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations.
Key Points
Seasonal deformation in the Himalaya is induced by continental water storage
Seasonal displacements computed for half‐space; layered spherical elastic Earth
Importance of realistic Earth structure to model seasonal displacements</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JB010451</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2463-218X</orcidid><orcidid>https://orcid.org/0000-0001-9934-9621</orcidid><orcidid>https://orcid.org/0000-0003-4504-0770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2014-06, Vol.119 (6), p.5097-5113 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03938670v1 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Amplitude Climate Data recovery Deformation Deformation mechanisms Displacement Earth Earth models Earth Sciences Earth structure Elastic deformation Evolution geodesy Geophysics Global positioning systems GPS GRACE Gravitation Gravity Green's function Green's functions Half spaces Himalaya Horizontal Mathematical models Modelling Monsoons Satellite data Satellite navigation systems Satellites Sciences of the Universe Seasonal variation Seasonal variations Seismic velocities surface hydrology tectonics Time series Velocity Vertical orientation Water storage |
title | Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20deformation%20induced%20by%20seasonal%20variations%20of%20continental%20water%20in%20the%20Himalaya%20region:%20Sensitivity%20to%20Earth%20elastic%20structure&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Chanard,%20K.&rft.date=2014-06&rft.volume=119&rft.issue=6&rft.spage=5097&rft.epage=5113&rft.pages=5097-5113&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2013JB010451&rft_dat=%3Cproquest_hal_p%3E1559710595%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642663681&rft_id=info:pmid/&rfr_iscdi=true |