Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure

Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2014-06, Vol.119 (6), p.5097-5113
Hauptverfasser: Chanard, K., Avouac, J. P., Ramillien, G., Genrich, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5113
container_issue 6
container_start_page 5097
container_title Journal of geophysical research. Solid earth
container_volume 119
creator Chanard, K.
Avouac, J. P.
Ramillien, G.
Genrich, J.
description Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations. Key Points Seasonal deformation in the Himalaya is induced by continental water storage Seasonal displacements computed for half‐space; layered spherical elastic Earth Importance of realistic Earth structure to model seasonal displacements
doi_str_mv 10.1002/2013JB010451
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03938670v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559710595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</originalsourceid><addsrcrecordid>eNqF0s1u1DAQAOAIgURVeuMBLHEBicBM_Jdwa6uyS7WARIvKzfImdtclG7e2syVPwGvjZdEKcSi-2Jr5xh5bLornCG8QoHpbAdLzE0BgHB8VBxWKpmwoF4_3a6RPi6MYbyCPOoeQHRQ_P_rO9G64Jp2xPqx1cn4gbujG1nRkOZFodPSD7slGB_c7G4m3pPVDcoMZUs7c62RCriFpZcjcrXWvJ02Cuc74HbkwQ3TJbVyaSPLkTIe0IqbXMbmWxBTGNo3BPCueWN1Hc_RnPiy-vj-7PJ2Xi8-zD6fHi1JzKaFcopWMV1JyyvgSKmEp1dgi62orwXLOGW0pl9USJNY1WquBUda1orUN1JYeFq92-650r25DbjZMymun5scLtY0BbWgtJGww25c7exv83WhiUmsXW9P3ejB-jAoFqyhmLv9POW8kAm94pi_-oTd-DPmFs2qQypoLZA-qfKwQVNTbDl_vVBt8jMHY_ZUQ1PZXqL9_ReZ0x-9db6YHrTqffTnhIDjkqnJX5WIyP_ZVOnxXQlLJ1dWnmYIrvBCX8psS9Bd-EsVC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642663681</pqid></control><display><type>article</type><title>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chanard, K. ; Avouac, J. P. ; Ramillien, G. ; Genrich, J.</creator><creatorcontrib>Chanard, K. ; Avouac, J. P. ; Ramillien, G. ; Genrich, J.</creatorcontrib><description>Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations. Key Points Seasonal deformation in the Himalaya is induced by continental water storage Seasonal displacements computed for half‐space; layered spherical elastic Earth Importance of realistic Earth structure to model seasonal displacements</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2013JB010451</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amplitude ; Climate ; Data recovery ; Deformation ; Deformation mechanisms ; Displacement ; Earth ; Earth models ; Earth Sciences ; Earth structure ; Elastic deformation ; Evolution ; geodesy ; Geophysics ; Global positioning systems ; GPS ; GRACE ; Gravitation ; Gravity ; Green's function ; Green's functions ; Half spaces ; Himalaya ; Horizontal ; Mathematical models ; Modelling ; Monsoons ; Satellite data ; Satellite navigation systems ; Satellites ; Sciences of the Universe ; Seasonal variation ; Seasonal variations ; Seismic velocities ; surface hydrology ; tectonics ; Time series ; Velocity ; Vertical orientation ; Water storage</subject><ispartof>Journal of geophysical research. Solid earth, 2014-06, Vol.119 (6), p.5097-5113</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</citedby><cites>FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</cites><orcidid>0000-0002-2463-218X ; 0000-0001-9934-9621 ; 0000-0003-4504-0770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JB010451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JB010451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03938670$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chanard, K.</creatorcontrib><creatorcontrib>Avouac, J. P.</creatorcontrib><creatorcontrib>Ramillien, G.</creatorcontrib><creatorcontrib>Genrich, J.</creatorcontrib><title>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</title><title>Journal of geophysical research. Solid earth</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations. Key Points Seasonal deformation in the Himalaya is induced by continental water storage Seasonal displacements computed for half‐space; layered spherical elastic Earth Importance of realistic Earth structure to model seasonal displacements</description><subject>Amplitude</subject><subject>Climate</subject><subject>Data recovery</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Displacement</subject><subject>Earth</subject><subject>Earth models</subject><subject>Earth Sciences</subject><subject>Earth structure</subject><subject>Elastic deformation</subject><subject>Evolution</subject><subject>geodesy</subject><subject>Geophysics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GRACE</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Green's function</subject><subject>Green's functions</subject><subject>Half spaces</subject><subject>Himalaya</subject><subject>Horizontal</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Monsoons</subject><subject>Satellite data</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seismic velocities</subject><subject>surface hydrology</subject><subject>tectonics</subject><subject>Time series</subject><subject>Velocity</subject><subject>Vertical orientation</subject><subject>Water storage</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0s1u1DAQAOAIgURVeuMBLHEBicBM_Jdwa6uyS7WARIvKzfImdtclG7e2syVPwGvjZdEKcSi-2Jr5xh5bLornCG8QoHpbAdLzE0BgHB8VBxWKpmwoF4_3a6RPi6MYbyCPOoeQHRQ_P_rO9G64Jp2xPqx1cn4gbujG1nRkOZFodPSD7slGB_c7G4m3pPVDcoMZUs7c62RCriFpZcjcrXWvJ02Cuc74HbkwQ3TJbVyaSPLkTIe0IqbXMbmWxBTGNo3BPCueWN1Hc_RnPiy-vj-7PJ2Xi8-zD6fHi1JzKaFcopWMV1JyyvgSKmEp1dgi62orwXLOGW0pl9USJNY1WquBUda1orUN1JYeFq92-650r25DbjZMymun5scLtY0BbWgtJGww25c7exv83WhiUmsXW9P3ejB-jAoFqyhmLv9POW8kAm94pi_-oTd-DPmFs2qQypoLZA-qfKwQVNTbDl_vVBt8jMHY_ZUQ1PZXqL9_ReZ0x-9db6YHrTqffTnhIDjkqnJX5WIyP_ZVOnxXQlLJ1dWnmYIrvBCX8psS9Bd-EsVC</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Chanard, K.</creator><creator>Avouac, J. P.</creator><creator>Ramillien, G.</creator><creator>Genrich, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2463-218X</orcidid><orcidid>https://orcid.org/0000-0001-9934-9621</orcidid><orcidid>https://orcid.org/0000-0003-4504-0770</orcidid></search><sort><creationdate>201406</creationdate><title>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</title><author>Chanard, K. ; Avouac, J. P. ; Ramillien, G. ; Genrich, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5770-b1f7452775345b026f33a1c14d8f70f55543c3572b071881ffa0434dc6cf908f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitude</topic><topic>Climate</topic><topic>Data recovery</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Displacement</topic><topic>Earth</topic><topic>Earth models</topic><topic>Earth Sciences</topic><topic>Earth structure</topic><topic>Elastic deformation</topic><topic>Evolution</topic><topic>geodesy</topic><topic>Geophysics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GRACE</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Green's function</topic><topic>Green's functions</topic><topic>Half spaces</topic><topic>Himalaya</topic><topic>Horizontal</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Monsoons</topic><topic>Satellite data</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seismic velocities</topic><topic>surface hydrology</topic><topic>tectonics</topic><topic>Time series</topic><topic>Velocity</topic><topic>Vertical orientation</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chanard, K.</creatorcontrib><creatorcontrib>Avouac, J. P.</creatorcontrib><creatorcontrib>Ramillien, G.</creatorcontrib><creatorcontrib>Genrich, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chanard, K.</au><au>Avouac, J. P.</au><au>Ramillien, G.</au><au>Genrich, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2014-06</date><risdate>2014</risdate><volume>119</volume><issue>6</issue><spage>5097</spage><epage>5113</epage><pages>5097-5113</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations. Key Points Seasonal deformation in the Himalaya is induced by continental water storage Seasonal displacements computed for half‐space; layered spherical elastic Earth Importance of realistic Earth structure to model seasonal displacements</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JB010451</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2463-218X</orcidid><orcidid>https://orcid.org/0000-0001-9934-9621</orcidid><orcidid>https://orcid.org/0000-0003-4504-0770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2014-06, Vol.119 (6), p.5097-5113
issn 2169-9313
2169-9356
language eng
recordid cdi_hal_primary_oai_HAL_hal_03938670v1
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Amplitude
Climate
Data recovery
Deformation
Deformation mechanisms
Displacement
Earth
Earth models
Earth Sciences
Earth structure
Elastic deformation
Evolution
geodesy
Geophysics
Global positioning systems
GPS
GRACE
Gravitation
Gravity
Green's function
Green's functions
Half spaces
Himalaya
Horizontal
Mathematical models
Modelling
Monsoons
Satellite data
Satellite navigation systems
Satellites
Sciences of the Universe
Seasonal variation
Seasonal variations
Seismic velocities
surface hydrology
tectonics
Time series
Velocity
Vertical orientation
Water storage
title Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20deformation%20induced%20by%20seasonal%20variations%20of%20continental%20water%20in%20the%20Himalaya%20region:%20Sensitivity%20to%20Earth%20elastic%20structure&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Chanard,%20K.&rft.date=2014-06&rft.volume=119&rft.issue=6&rft.spage=5097&rft.epage=5113&rft.pages=5097-5113&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2013JB010451&rft_dat=%3Cproquest_hal_p%3E1559710595%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642663681&rft_id=info:pmid/&rfr_iscdi=true