A Weyl's law for black holes
We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-di...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2024-11, Vol.110 (10) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review. D |
container_volume | 110 |
creator | Jaramillo, José Luis Macedo, Rodrigo P. Meneses-Rojas, Oscar Raffaelli, Bernard Sheikh, Lamis Al |
description | We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers. |
doi_str_mv | 10.1103/PhysRevD.110.104008 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03921051v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03921051v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03921051v13</originalsourceid><addsrcrecordid>eNpjYJA2NNAzNDQw1g_IqCwOSi1zAfH0DA1MDAwsmBg4jUzMDXQNDIwsWeBsQwMOBt7i4iwDINPMwNLc0JCTQcZRITy1Mke9WCEnsVwhLb9IISknMTlbISM_J7WYh4E1LTGnOJUXSnMzaLq5hjh76GYk5sQXFGXmJhZVxucnZsZ7OPrEg8QMjC2NDA1MDcsMjUlRCwAQMDcE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Weyl's law for black holes</title><source>American Physical Society Journals</source><creator>Jaramillo, José Luis ; Macedo, Rodrigo P. ; Meneses-Rojas, Oscar ; Raffaelli, Bernard ; Sheikh, Lamis Al</creator><creatorcontrib>Jaramillo, José Luis ; Macedo, Rodrigo P. ; Meneses-Rojas, Oscar ; Raffaelli, Bernard ; Sheikh, Lamis Al</creatorcontrib><description>We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.104008</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>General Relativity and Quantum Cosmology ; High Energy Physics - Theory ; Physics</subject><ispartof>Physical review. D, 2024-11, Vol.110 (10)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9966-7600 ; 0000-0002-9966-7600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03921051$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaramillo, José Luis</creatorcontrib><creatorcontrib>Macedo, Rodrigo P.</creatorcontrib><creatorcontrib>Meneses-Rojas, Oscar</creatorcontrib><creatorcontrib>Raffaelli, Bernard</creatorcontrib><creatorcontrib>Sheikh, Lamis Al</creatorcontrib><title>A Weyl's law for black holes</title><title>Physical review. D</title><description>We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.</description><subject>General Relativity and Quantum Cosmology</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpjYJA2NNAzNDQw1g_IqCwOSi1zAfH0DA1MDAwsmBg4jUzMDXQNDIwsWeBsQwMOBt7i4iwDINPMwNLc0JCTQcZRITy1Mke9WCEnsVwhLb9IISknMTlbISM_J7WYh4E1LTGnOJUXSnMzaLq5hjh76GYk5sQXFGXmJhZVxucnZsZ7OPrEg8QMjC2NDA1MDcsMjUlRCwAQMDcE</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Jaramillo, José Luis</creator><creator>Macedo, Rodrigo P.</creator><creator>Meneses-Rojas, Oscar</creator><creator>Raffaelli, Bernard</creator><creator>Sheikh, Lamis Al</creator><general>American Physical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid></search><sort><creationdate>20241105</creationdate><title>A Weyl's law for black holes</title><author>Jaramillo, José Luis ; Macedo, Rodrigo P. ; Meneses-Rojas, Oscar ; Raffaelli, Bernard ; Sheikh, Lamis Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03921051v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>General Relativity and Quantum Cosmology</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaramillo, José Luis</creatorcontrib><creatorcontrib>Macedo, Rodrigo P.</creatorcontrib><creatorcontrib>Meneses-Rojas, Oscar</creatorcontrib><creatorcontrib>Raffaelli, Bernard</creatorcontrib><creatorcontrib>Sheikh, Lamis Al</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaramillo, José Luis</au><au>Macedo, Rodrigo P.</au><au>Meneses-Rojas, Oscar</au><au>Raffaelli, Bernard</au><au>Sheikh, Lamis Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Weyl's law for black holes</atitle><jtitle>Physical review. D</jtitle><date>2024-11-05</date><risdate>2024</risdate><volume>110</volume><issue>10</issue><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevD.110.104008</doi><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2024-11, Vol.110 (10) |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03921051v1 |
source | American Physical Society Journals |
subjects | General Relativity and Quantum Cosmology High Energy Physics - Theory Physics |
title | A Weyl's law for black holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Weyl's%20law%20for%20black%20holes&rft.jtitle=Physical%20review.%20D&rft.au=Jaramillo,%20Jos%C3%A9%20Luis&rft.date=2024-11-05&rft.volume=110&rft.issue=10&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.104008&rft_dat=%3Chal%3Eoai_HAL_hal_03921051v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |