A Weyl's law for black holes

We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-11, Vol.110 (10)
Hauptverfasser: Jaramillo, José Luis, Macedo, Rodrigo P., Meneses-Rojas, Oscar, Raffaelli, Bernard, Sheikh, Lamis Al
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. D
container_volume 110
creator Jaramillo, José Luis
Macedo, Rodrigo P.
Meneses-Rojas, Oscar
Raffaelli, Bernard
Sheikh, Lamis Al
description We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.
doi_str_mv 10.1103/PhysRevD.110.104008
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03921051v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03921051v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03921051v13</originalsourceid><addsrcrecordid>eNpjYJA2NNAzNDQw1g_IqCwOSi1zAfH0DA1MDAwsmBg4jUzMDXQNDIwsWeBsQwMOBt7i4iwDINPMwNLc0JCTQcZRITy1Mke9WCEnsVwhLb9IISknMTlbISM_J7WYh4E1LTGnOJUXSnMzaLq5hjh76GYk5sQXFGXmJhZVxucnZsZ7OPrEg8QMjC2NDA1MDcsMjUlRCwAQMDcE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Weyl's law for black holes</title><source>American Physical Society Journals</source><creator>Jaramillo, José Luis ; Macedo, Rodrigo P. ; Meneses-Rojas, Oscar ; Raffaelli, Bernard ; Sheikh, Lamis Al</creator><creatorcontrib>Jaramillo, José Luis ; Macedo, Rodrigo P. ; Meneses-Rojas, Oscar ; Raffaelli, Bernard ; Sheikh, Lamis Al</creatorcontrib><description>We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.104008</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>General Relativity and Quantum Cosmology ; High Energy Physics - Theory ; Physics</subject><ispartof>Physical review. D, 2024-11, Vol.110 (10)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9966-7600 ; 0000-0002-9966-7600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03921051$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaramillo, José Luis</creatorcontrib><creatorcontrib>Macedo, Rodrigo P.</creatorcontrib><creatorcontrib>Meneses-Rojas, Oscar</creatorcontrib><creatorcontrib>Raffaelli, Bernard</creatorcontrib><creatorcontrib>Sheikh, Lamis Al</creatorcontrib><title>A Weyl's law for black holes</title><title>Physical review. D</title><description>We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.</description><subject>General Relativity and Quantum Cosmology</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpjYJA2NNAzNDQw1g_IqCwOSi1zAfH0DA1MDAwsmBg4jUzMDXQNDIwsWeBsQwMOBt7i4iwDINPMwNLc0JCTQcZRITy1Mke9WCEnsVwhLb9IISknMTlbISM_J7WYh4E1LTGnOJUXSnMzaLq5hjh76GYk5sQXFGXmJhZVxucnZsZ7OPrEg8QMjC2NDA1MDcsMjUlRCwAQMDcE</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Jaramillo, José Luis</creator><creator>Macedo, Rodrigo P.</creator><creator>Meneses-Rojas, Oscar</creator><creator>Raffaelli, Bernard</creator><creator>Sheikh, Lamis Al</creator><general>American Physical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid></search><sort><creationdate>20241105</creationdate><title>A Weyl's law for black holes</title><author>Jaramillo, José Luis ; Macedo, Rodrigo P. ; Meneses-Rojas, Oscar ; Raffaelli, Bernard ; Sheikh, Lamis Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03921051v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>General Relativity and Quantum Cosmology</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaramillo, José Luis</creatorcontrib><creatorcontrib>Macedo, Rodrigo P.</creatorcontrib><creatorcontrib>Meneses-Rojas, Oscar</creatorcontrib><creatorcontrib>Raffaelli, Bernard</creatorcontrib><creatorcontrib>Sheikh, Lamis Al</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaramillo, José Luis</au><au>Macedo, Rodrigo P.</au><au>Meneses-Rojas, Oscar</au><au>Raffaelli, Bernard</au><au>Sheikh, Lamis Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Weyl's law for black holes</atitle><jtitle>Physical review. D</jtitle><date>2024-11-05</date><risdate>2024</risdate><volume>110</volume><issue>10</issue><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevD.110.104008</doi><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid><orcidid>https://orcid.org/0000-0002-9966-7600</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-11, Vol.110 (10)
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_03921051v1
source American Physical Society Journals
subjects General Relativity and Quantum Cosmology
High Energy Physics - Theory
Physics
title A Weyl's law for black holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Weyl's%20law%20for%20black%20holes&rft.jtitle=Physical%20review.%20D&rft.au=Jaramillo,%20Jos%C3%A9%20Luis&rft.date=2024-11-05&rft.volume=110&rft.issue=10&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.104008&rft_dat=%3Chal%3Eoai_HAL_hal_03921051v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true