Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy

Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (10), p.e2206789-n/a
Hauptverfasser: Dufil, Yannick, Dietrich, Marc, Zigah, Dodzi, Favier, Frederic, Sadki, Saïd, Gentile, Pascal, Fontaine, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2206789
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Dufil, Yannick
Dietrich, Marc
Zigah, Dodzi
Favier, Frederic
Sadki, Saïd
Gentile, Pascal
Fontaine, Olivier
description Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ. Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.
doi_str_mv 10.1002/smll.202206789
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03914131v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785181969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</originalsourceid><addsrcrecordid>eNqFkLtPwzAQhy0E4lFYGVEkJoYWny9xYjZUykMKDykwW67jgFEaFzsB9b8nUaGMTHdnfffp_CPkGOgEKGXnYVHXE0YZozzNxBbZBw445hkT25se6B45COGdUgQWp7tkD3kSI2Zsn8xzp1UdXZlXr0rVWtdEroqeZlePzxdPRRH1c2Frq_v6oBoXWt_ptvMmRC_BNq9RoVXTDM2sNrr1Tr-ZhR2M91Z7F7Rbrg7JTqXqYI5-6oi8XM-ep7fj_PHmbnqZj3Ucp2IMSWYUKKYQORfI52i4SYGlrEKEudHKJKyECrlgJfIqjhkmscAkFVVJgeKInK29b6qWS28Xyq-kU1beXuZyeKMoIAaET-jZ0zW79O6jM6GV767zTX-eZGmWQAaiv2FEJmtq-ErwptpogcohfjnELzfx9wsnP9puvjDlBv_NuwfEGviytVn9o5PFfZ7_yb8BCB2PwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785181969</pqid></control><display><type>article</type><title>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dufil, Yannick ; Dietrich, Marc ; Zigah, Dodzi ; Favier, Frederic ; Sadki, Saïd ; Gentile, Pascal ; Fontaine, Olivier</creator><creatorcontrib>Dufil, Yannick ; Dietrich, Marc ; Zigah, Dodzi ; Favier, Frederic ; Sadki, Saïd ; Gentile, Pascal ; Fontaine, Olivier</creatorcontrib><description>Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ. Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202206789</identifier><identifier>PMID: 36543382</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Conducting polymers ; conductive polymers ; Degradation ; degradation simulations ; Electrode materials ; Electrodes ; Energy storage ; Engineering Sciences ; Microscopy ; micro‐electrochemical energy storage (MEES) ; Nanotechnology ; Nanowires ; PEDOT:PSS ; Physics ; pseudocapacitive behaviors ; scanning electrochemical microscopy (SECM) ; Silicon ; SiNWs nano‐composite electrodes ; Time constant</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206789-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</citedby><cites>FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</cites><orcidid>0000-0002-1804-5990 ; 0000-0003-4446-1717 ; 0000-0002-5702-8237 ; 0000-0002-1515-7807 ; 0000-0001-9444-8380 ; 0000-0002-4187-6039 ; 0000-0002-1547-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202206789$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202206789$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36543382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03914131$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dufil, Yannick</creatorcontrib><creatorcontrib>Dietrich, Marc</creatorcontrib><creatorcontrib>Zigah, Dodzi</creatorcontrib><creatorcontrib>Favier, Frederic</creatorcontrib><creatorcontrib>Sadki, Saïd</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><title>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ. Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.</description><subject>Conducting polymers</subject><subject>conductive polymers</subject><subject>Degradation</subject><subject>degradation simulations</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Engineering Sciences</subject><subject>Microscopy</subject><subject>micro‐electrochemical energy storage (MEES)</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>PEDOT:PSS</subject><subject>Physics</subject><subject>pseudocapacitive behaviors</subject><subject>scanning electrochemical microscopy (SECM)</subject><subject>Silicon</subject><subject>SiNWs nano‐composite electrodes</subject><subject>Time constant</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtPwzAQhy0E4lFYGVEkJoYWny9xYjZUykMKDykwW67jgFEaFzsB9b8nUaGMTHdnfffp_CPkGOgEKGXnYVHXE0YZozzNxBbZBw445hkT25se6B45COGdUgQWp7tkD3kSI2Zsn8xzp1UdXZlXr0rVWtdEroqeZlePzxdPRRH1c2Frq_v6oBoXWt_ptvMmRC_BNq9RoVXTDM2sNrr1Tr-ZhR2M91Z7F7Rbrg7JTqXqYI5-6oi8XM-ep7fj_PHmbnqZj3Ucp2IMSWYUKKYQORfI52i4SYGlrEKEudHKJKyECrlgJfIqjhkmscAkFVVJgeKInK29b6qWS28Xyq-kU1beXuZyeKMoIAaET-jZ0zW79O6jM6GV767zTX-eZGmWQAaiv2FEJmtq-ErwptpogcohfjnELzfx9wsnP9puvjDlBv_NuwfEGviytVn9o5PFfZ7_yb8BCB2PwA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Dufil, Yannick</creator><creator>Dietrich, Marc</creator><creator>Zigah, Dodzi</creator><creator>Favier, Frederic</creator><creator>Sadki, Saïd</creator><creator>Gentile, Pascal</creator><creator>Fontaine, Olivier</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1804-5990</orcidid><orcidid>https://orcid.org/0000-0003-4446-1717</orcidid><orcidid>https://orcid.org/0000-0002-5702-8237</orcidid><orcidid>https://orcid.org/0000-0002-1515-7807</orcidid><orcidid>https://orcid.org/0000-0001-9444-8380</orcidid><orcidid>https://orcid.org/0000-0002-4187-6039</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid></search><sort><creationdate>20230301</creationdate><title>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</title><author>Dufil, Yannick ; Dietrich, Marc ; Zigah, Dodzi ; Favier, Frederic ; Sadki, Saïd ; Gentile, Pascal ; Fontaine, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conducting polymers</topic><topic>conductive polymers</topic><topic>Degradation</topic><topic>degradation simulations</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Engineering Sciences</topic><topic>Microscopy</topic><topic>micro‐electrochemical energy storage (MEES)</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>PEDOT:PSS</topic><topic>Physics</topic><topic>pseudocapacitive behaviors</topic><topic>scanning electrochemical microscopy (SECM)</topic><topic>Silicon</topic><topic>SiNWs nano‐composite electrodes</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dufil, Yannick</creatorcontrib><creatorcontrib>Dietrich, Marc</creatorcontrib><creatorcontrib>Zigah, Dodzi</creatorcontrib><creatorcontrib>Favier, Frederic</creatorcontrib><creatorcontrib>Sadki, Saïd</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dufil, Yannick</au><au>Dietrich, Marc</au><au>Zigah, Dodzi</au><au>Favier, Frederic</au><au>Sadki, Saïd</au><au>Gentile, Pascal</au><au>Fontaine, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e2206789</spage><epage>n/a</epage><pages>e2206789-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ. Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36543382</pmid><doi>10.1002/smll.202206789</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1804-5990</orcidid><orcidid>https://orcid.org/0000-0003-4446-1717</orcidid><orcidid>https://orcid.org/0000-0002-5702-8237</orcidid><orcidid>https://orcid.org/0000-0002-1515-7807</orcidid><orcidid>https://orcid.org/0000-0001-9444-8380</orcidid><orcidid>https://orcid.org/0000-0002-4187-6039</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206789-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_hal_primary_oai_HAL_hal_03914131v1
source Wiley Online Library - AutoHoldings Journals
subjects Conducting polymers
conductive polymers
Degradation
degradation simulations
Electrode materials
Electrodes
Energy storage
Engineering Sciences
Microscopy
micro‐electrochemical energy storage (MEES)
Nanotechnology
Nanowires
PEDOT:PSS
Physics
pseudocapacitive behaviors
scanning electrochemical microscopy (SECM)
Silicon
SiNWs nano‐composite electrodes
Time constant
title Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Degradation%20of%20PEDOT:PSS%20on%20Silicon%20Nanostructures%20Using%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dufil,%20Yannick&rft.date=2023-03-01&rft.volume=19&rft.issue=10&rft.spage=e2206789&rft.epage=n/a&rft.pages=e2206789-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202206789&rft_dat=%3Cproquest_hal_p%3E2785181969%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785181969&rft_id=info:pmid/36543382&rfr_iscdi=true