Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy
Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM)...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (10), p.e2206789-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e2206789 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Dufil, Yannick Dietrich, Marc Zigah, Dodzi Favier, Frederic Sadki, Saïd Gentile, Pascal Fontaine, Olivier |
description | Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ.
Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena. |
doi_str_mv | 10.1002/smll.202206789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03914131v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785181969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</originalsourceid><addsrcrecordid>eNqFkLtPwzAQhy0E4lFYGVEkJoYWny9xYjZUykMKDykwW67jgFEaFzsB9b8nUaGMTHdnfffp_CPkGOgEKGXnYVHXE0YZozzNxBbZBw445hkT25se6B45COGdUgQWp7tkD3kSI2Zsn8xzp1UdXZlXr0rVWtdEroqeZlePzxdPRRH1c2Frq_v6oBoXWt_ptvMmRC_BNq9RoVXTDM2sNrr1Tr-ZhR2M91Z7F7Rbrg7JTqXqYI5-6oi8XM-ep7fj_PHmbnqZj3Ucp2IMSWYUKKYQORfI52i4SYGlrEKEudHKJKyECrlgJfIqjhkmscAkFVVJgeKInK29b6qWS28Xyq-kU1beXuZyeKMoIAaET-jZ0zW79O6jM6GV767zTX-eZGmWQAaiv2FEJmtq-ErwptpogcohfjnELzfx9wsnP9puvjDlBv_NuwfEGviytVn9o5PFfZ7_yb8BCB2PwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785181969</pqid></control><display><type>article</type><title>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dufil, Yannick ; Dietrich, Marc ; Zigah, Dodzi ; Favier, Frederic ; Sadki, Saïd ; Gentile, Pascal ; Fontaine, Olivier</creator><creatorcontrib>Dufil, Yannick ; Dietrich, Marc ; Zigah, Dodzi ; Favier, Frederic ; Sadki, Saïd ; Gentile, Pascal ; Fontaine, Olivier</creatorcontrib><description>Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ.
Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202206789</identifier><identifier>PMID: 36543382</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Conducting polymers ; conductive polymers ; Degradation ; degradation simulations ; Electrode materials ; Electrodes ; Energy storage ; Engineering Sciences ; Microscopy ; micro‐electrochemical energy storage (MEES) ; Nanotechnology ; Nanowires ; PEDOT:PSS ; Physics ; pseudocapacitive behaviors ; scanning electrochemical microscopy (SECM) ; Silicon ; SiNWs nano‐composite electrodes ; Time constant</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206789-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</citedby><cites>FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</cites><orcidid>0000-0002-1804-5990 ; 0000-0003-4446-1717 ; 0000-0002-5702-8237 ; 0000-0002-1515-7807 ; 0000-0001-9444-8380 ; 0000-0002-4187-6039 ; 0000-0002-1547-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202206789$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202206789$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36543382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03914131$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dufil, Yannick</creatorcontrib><creatorcontrib>Dietrich, Marc</creatorcontrib><creatorcontrib>Zigah, Dodzi</creatorcontrib><creatorcontrib>Favier, Frederic</creatorcontrib><creatorcontrib>Sadki, Saïd</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><title>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ.
Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.</description><subject>Conducting polymers</subject><subject>conductive polymers</subject><subject>Degradation</subject><subject>degradation simulations</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Engineering Sciences</subject><subject>Microscopy</subject><subject>micro‐electrochemical energy storage (MEES)</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>PEDOT:PSS</subject><subject>Physics</subject><subject>pseudocapacitive behaviors</subject><subject>scanning electrochemical microscopy (SECM)</subject><subject>Silicon</subject><subject>SiNWs nano‐composite electrodes</subject><subject>Time constant</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtPwzAQhy0E4lFYGVEkJoYWny9xYjZUykMKDykwW67jgFEaFzsB9b8nUaGMTHdnfffp_CPkGOgEKGXnYVHXE0YZozzNxBbZBw445hkT25se6B45COGdUgQWp7tkD3kSI2Zsn8xzp1UdXZlXr0rVWtdEroqeZlePzxdPRRH1c2Frq_v6oBoXWt_ptvMmRC_BNq9RoVXTDM2sNrr1Tr-ZhR2M91Z7F7Rbrg7JTqXqYI5-6oi8XM-ep7fj_PHmbnqZj3Ucp2IMSWYUKKYQORfI52i4SYGlrEKEudHKJKyECrlgJfIqjhkmscAkFVVJgeKInK29b6qWS28Xyq-kU1beXuZyeKMoIAaET-jZ0zW79O6jM6GV767zTX-eZGmWQAaiv2FEJmtq-ErwptpogcohfjnELzfx9wsnP9puvjDlBv_NuwfEGviytVn9o5PFfZ7_yb8BCB2PwA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Dufil, Yannick</creator><creator>Dietrich, Marc</creator><creator>Zigah, Dodzi</creator><creator>Favier, Frederic</creator><creator>Sadki, Saïd</creator><creator>Gentile, Pascal</creator><creator>Fontaine, Olivier</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1804-5990</orcidid><orcidid>https://orcid.org/0000-0003-4446-1717</orcidid><orcidid>https://orcid.org/0000-0002-5702-8237</orcidid><orcidid>https://orcid.org/0000-0002-1515-7807</orcidid><orcidid>https://orcid.org/0000-0001-9444-8380</orcidid><orcidid>https://orcid.org/0000-0002-4187-6039</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid></search><sort><creationdate>20230301</creationdate><title>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</title><author>Dufil, Yannick ; Dietrich, Marc ; Zigah, Dodzi ; Favier, Frederic ; Sadki, Saïd ; Gentile, Pascal ; Fontaine, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4479-158ea1a2a3366936b3e6e71272f331becae52d1f3692d36f44235493579fd0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conducting polymers</topic><topic>conductive polymers</topic><topic>Degradation</topic><topic>degradation simulations</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Engineering Sciences</topic><topic>Microscopy</topic><topic>micro‐electrochemical energy storage (MEES)</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>PEDOT:PSS</topic><topic>Physics</topic><topic>pseudocapacitive behaviors</topic><topic>scanning electrochemical microscopy (SECM)</topic><topic>Silicon</topic><topic>SiNWs nano‐composite electrodes</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dufil, Yannick</creatorcontrib><creatorcontrib>Dietrich, Marc</creatorcontrib><creatorcontrib>Zigah, Dodzi</creatorcontrib><creatorcontrib>Favier, Frederic</creatorcontrib><creatorcontrib>Sadki, Saïd</creatorcontrib><creatorcontrib>Gentile, Pascal</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dufil, Yannick</au><au>Dietrich, Marc</au><au>Zigah, Dodzi</au><au>Favier, Frederic</au><au>Sadki, Saïd</au><au>Gentile, Pascal</au><au>Fontaine, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e2206789</spage><epage>n/a</epage><pages>e2206789-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Conducting polymers show attractive characteristics as electrode materials for micro‐electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer‐based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ.
Three silicon‐nanostructure‐PEDOT:PSS composite electrodes are rapidly and locally degraded by scanning electrochemical microscopy. Silicon nanowires stabilize the composite electrodes while nano‐shafts accelerate and emphasize the degradation effects. The role of native oxide formation on the nanostructures is put forward as the main hypothesis to explain the observed phenomena.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36543382</pmid><doi>10.1002/smll.202206789</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1804-5990</orcidid><orcidid>https://orcid.org/0000-0003-4446-1717</orcidid><orcidid>https://orcid.org/0000-0002-5702-8237</orcidid><orcidid>https://orcid.org/0000-0002-1515-7807</orcidid><orcidid>https://orcid.org/0000-0001-9444-8380</orcidid><orcidid>https://orcid.org/0000-0002-4187-6039</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206789-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03914131v1 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Conducting polymers conductive polymers Degradation degradation simulations Electrode materials Electrodes Energy storage Engineering Sciences Microscopy micro‐electrochemical energy storage (MEES) Nanotechnology Nanowires PEDOT:PSS Physics pseudocapacitive behaviors scanning electrochemical microscopy (SECM) Silicon SiNWs nano‐composite electrodes Time constant |
title | Local Degradation of PEDOT:PSS on Silicon Nanostructures Using Scanning Electrochemical Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Degradation%20of%20PEDOT:PSS%20on%20Silicon%20Nanostructures%20Using%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dufil,%20Yannick&rft.date=2023-03-01&rft.volume=19&rft.issue=10&rft.spage=e2206789&rft.epage=n/a&rft.pages=e2206789-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202206789&rft_dat=%3Cproquest_hal_p%3E2785181969%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785181969&rft_id=info:pmid/36543382&rfr_iscdi=true |