The six-functor formalism for rigid analytic motives

We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2022-01, Vol.10, Article e61
Hauptverfasser: Ayoub, Joseph, Gallauer, Martin, Vezzani, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Forum of mathematics. Sigma
container_volume 10
creator Ayoub, Joseph
Gallauer, Martin
Vezzani, Alberto
description We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.
doi_str_mv 10.1017/fms.2022.55
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03907392v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fms_2022_55</cupid><sourcerecordid>2699621914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-af62c08c6211daa9ae76ca96f29fe9c5b91627288820144722610d74a23759cc3</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMoOOae_AMFn0Q6b26bpnkcQzdh4Mt8DlmabBntMpNuuH9vy4b64NM9XD4Oh4-QewpjCpQ_2yaOERDHjF2RAQKDlIHIr__kWzKKcQsAlCJnnA9IvtyYJLqv1B52uvUhsT40qnax6VMS3NpVidqp-tQ6nTS-dUcT78iNVXU0o8sdko_Xl-V0ni7eZ2_TySLVGYc2VbZADaUukNJKKaEML7QShUVhjdBsJWiBHMuyRKB5zhELChXPFWacCa2zIXk8925ULffBNSqcpFdOzicL2f8gE8AzgUfasQ9ndh_858HEVm79IXTDo8RCiG6DoHlHPZ0pHXyMwdifWgqytyg7i7K3KBnr6PRCq2YVXLU2v6X_8d9j8XEG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699621914</pqid></control><display><type>article</type><title>The six-functor formalism for rigid analytic motives</title><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ayoub, Joseph ; Gallauer, Martin ; Vezzani, Alberto</creator><creatorcontrib>Ayoub, Joseph ; Gallauer, Martin ; Vezzani, Alberto</creatorcontrib><description>We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><identifier>DOI: 10.1017/fms.2022.55</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Algebraic and Complex Geometry ; Algebraic Geometry ; Analytic geometry ; Formalism ; Geometry ; Mathematical analysis ; Mathematics ; Questions ; Theorems</subject><ispartof>Forum of mathematics. Sigma, 2022-01, Vol.10, Article e61</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-af62c08c6211daa9ae76ca96f29fe9c5b91627288820144722610d74a23759cc3</citedby><orcidid>0000-0002-1179-8287 ; 0000-0003-2539-0511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S205050942200055X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,23297,27901,27902,55779</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03907392$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayoub, Joseph</creatorcontrib><creatorcontrib>Gallauer, Martin</creatorcontrib><creatorcontrib>Vezzani, Alberto</creatorcontrib><title>The six-functor formalism for rigid analytic motives</title><title>Forum of mathematics. Sigma</title><addtitle>Forum of Mathematics, Sigma</addtitle><description>We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.</description><subject>Algebra</subject><subject>Algebraic and Complex Geometry</subject><subject>Algebraic Geometry</subject><subject>Analytic geometry</subject><subject>Formalism</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Questions</subject><subject>Theorems</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNptkFFLwzAUhYMoOOae_AMFn0Q6b26bpnkcQzdh4Mt8DlmabBntMpNuuH9vy4b64NM9XD4Oh4-QewpjCpQ_2yaOERDHjF2RAQKDlIHIr__kWzKKcQsAlCJnnA9IvtyYJLqv1B52uvUhsT40qnax6VMS3NpVidqp-tQ6nTS-dUcT78iNVXU0o8sdko_Xl-V0ni7eZ2_TySLVGYc2VbZADaUukNJKKaEML7QShUVhjdBsJWiBHMuyRKB5zhELChXPFWacCa2zIXk8925ULffBNSqcpFdOzicL2f8gE8AzgUfasQ9ndh_858HEVm79IXTDo8RCiG6DoHlHPZ0pHXyMwdifWgqytyg7i7K3KBnr6PRCq2YVXLU2v6X_8d9j8XEG</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ayoub, Joseph</creator><creator>Gallauer, Martin</creator><creator>Vezzani, Alberto</creator><general>Cambridge University Press</general><general>Cambridge University press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1179-8287</orcidid><orcidid>https://orcid.org/0000-0003-2539-0511</orcidid></search><sort><creationdate>20220101</creationdate><title>The six-functor formalism for rigid analytic motives</title><author>Ayoub, Joseph ; Gallauer, Martin ; Vezzani, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-af62c08c6211daa9ae76ca96f29fe9c5b91627288820144722610d74a23759cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algebraic and Complex Geometry</topic><topic>Algebraic Geometry</topic><topic>Analytic geometry</topic><topic>Formalism</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Questions</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayoub, Joseph</creatorcontrib><creatorcontrib>Gallauer, Martin</creatorcontrib><creatorcontrib>Vezzani, Alberto</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Forum of mathematics. Sigma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayoub, Joseph</au><au>Gallauer, Martin</au><au>Vezzani, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The six-functor formalism for rigid analytic motives</atitle><jtitle>Forum of mathematics. Sigma</jtitle><addtitle>Forum of Mathematics, Sigma</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><artnum>e61</artnum><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fms.2022.55</doi><tpages>182</tpages><orcidid>https://orcid.org/0000-0002-1179-8287</orcidid><orcidid>https://orcid.org/0000-0003-2539-0511</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-5094
ispartof Forum of mathematics. Sigma, 2022-01, Vol.10, Article e61
issn 2050-5094
2050-5094
language eng
recordid cdi_hal_primary_oai_HAL_hal_03907392v1
source Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Algebraic and Complex Geometry
Algebraic Geometry
Analytic geometry
Formalism
Geometry
Mathematical analysis
Mathematics
Questions
Theorems
title The six-functor formalism for rigid analytic motives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20six-functor%20formalism%20for%20rigid%20analytic%20motives&rft.jtitle=Forum%20of%20mathematics.%20Sigma&rft.au=Ayoub,%20Joseph&rft.date=2022-01-01&rft.volume=10&rft.artnum=e61&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/10.1017/fms.2022.55&rft_dat=%3Cproquest_hal_p%3E2699621914%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699621914&rft_id=info:pmid/&rft_cupid=10_1017_fms_2022_55&rfr_iscdi=true