The six-functor formalism for rigid analytic motives
We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we devel...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2022-01, Vol.10, Article e61 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Forum of mathematics. Sigma |
container_volume | 10 |
creator | Ayoub, Joseph Gallauer, Martin Vezzani, Alberto |
description | We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry. |
doi_str_mv | 10.1017/fms.2022.55 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03907392v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_fms_2022_55</cupid><sourcerecordid>2699621914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-af62c08c6211daa9ae76ca96f29fe9c5b91627288820144722610d74a23759cc3</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMoOOae_AMFn0Q6b26bpnkcQzdh4Mt8DlmabBntMpNuuH9vy4b64NM9XD4Oh4-QewpjCpQ_2yaOERDHjF2RAQKDlIHIr__kWzKKcQsAlCJnnA9IvtyYJLqv1B52uvUhsT40qnax6VMS3NpVidqp-tQ6nTS-dUcT78iNVXU0o8sdko_Xl-V0ni7eZ2_TySLVGYc2VbZADaUukNJKKaEML7QShUVhjdBsJWiBHMuyRKB5zhELChXPFWacCa2zIXk8925ULffBNSqcpFdOzicL2f8gE8AzgUfasQ9ndh_858HEVm79IXTDo8RCiG6DoHlHPZ0pHXyMwdifWgqytyg7i7K3KBnr6PRCq2YVXLU2v6X_8d9j8XEG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699621914</pqid></control><display><type>article</type><title>The six-functor formalism for rigid analytic motives</title><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ayoub, Joseph ; Gallauer, Martin ; Vezzani, Alberto</creator><creatorcontrib>Ayoub, Joseph ; Gallauer, Martin ; Vezzani, Alberto</creatorcontrib><description>We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><identifier>DOI: 10.1017/fms.2022.55</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Algebraic and Complex Geometry ; Algebraic Geometry ; Analytic geometry ; Formalism ; Geometry ; Mathematical analysis ; Mathematics ; Questions ; Theorems</subject><ispartof>Forum of mathematics. Sigma, 2022-01, Vol.10, Article e61</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-af62c08c6211daa9ae76ca96f29fe9c5b91627288820144722610d74a23759cc3</citedby><orcidid>0000-0002-1179-8287 ; 0000-0003-2539-0511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S205050942200055X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,23297,27901,27902,55779</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03907392$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayoub, Joseph</creatorcontrib><creatorcontrib>Gallauer, Martin</creatorcontrib><creatorcontrib>Vezzani, Alberto</creatorcontrib><title>The six-functor formalism for rigid analytic motives</title><title>Forum of mathematics. Sigma</title><addtitle>Forum of Mathematics, Sigma</addtitle><description>We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.</description><subject>Algebra</subject><subject>Algebraic and Complex Geometry</subject><subject>Algebraic Geometry</subject><subject>Analytic geometry</subject><subject>Formalism</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Questions</subject><subject>Theorems</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNptkFFLwzAUhYMoOOae_AMFn0Q6b26bpnkcQzdh4Mt8DlmabBntMpNuuH9vy4b64NM9XD4Oh4-QewpjCpQ_2yaOERDHjF2RAQKDlIHIr__kWzKKcQsAlCJnnA9IvtyYJLqv1B52uvUhsT40qnax6VMS3NpVidqp-tQ6nTS-dUcT78iNVXU0o8sdko_Xl-V0ni7eZ2_TySLVGYc2VbZADaUukNJKKaEML7QShUVhjdBsJWiBHMuyRKB5zhELChXPFWacCa2zIXk8925ULffBNSqcpFdOzicL2f8gE8AzgUfasQ9ndh_858HEVm79IXTDo8RCiG6DoHlHPZ0pHXyMwdifWgqytyg7i7K3KBnr6PRCq2YVXLU2v6X_8d9j8XEG</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ayoub, Joseph</creator><creator>Gallauer, Martin</creator><creator>Vezzani, Alberto</creator><general>Cambridge University Press</general><general>Cambridge University press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1179-8287</orcidid><orcidid>https://orcid.org/0000-0003-2539-0511</orcidid></search><sort><creationdate>20220101</creationdate><title>The six-functor formalism for rigid analytic motives</title><author>Ayoub, Joseph ; Gallauer, Martin ; Vezzani, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-af62c08c6211daa9ae76ca96f29fe9c5b91627288820144722610d74a23759cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algebraic and Complex Geometry</topic><topic>Algebraic Geometry</topic><topic>Analytic geometry</topic><topic>Formalism</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Questions</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayoub, Joseph</creatorcontrib><creatorcontrib>Gallauer, Martin</creatorcontrib><creatorcontrib>Vezzani, Alberto</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Forum of mathematics. Sigma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayoub, Joseph</au><au>Gallauer, Martin</au><au>Vezzani, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The six-functor formalism for rigid analytic motives</atitle><jtitle>Forum of mathematics. Sigma</jtitle><addtitle>Forum of Mathematics, Sigma</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><artnum>e61</artnum><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/fms.2022.55</doi><tpages>182</tpages><orcidid>https://orcid.org/0000-0002-1179-8287</orcidid><orcidid>https://orcid.org/0000-0003-2539-0511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-5094 |
ispartof | Forum of mathematics. Sigma, 2022-01, Vol.10, Article e61 |
issn | 2050-5094 2050-5094 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03907392v1 |
source | Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algebra Algebraic and Complex Geometry Algebraic Geometry Analytic geometry Formalism Geometry Mathematical analysis Mathematics Questions Theorems |
title | The six-functor formalism for rigid analytic motives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20six-functor%20formalism%20for%20rigid%20analytic%20motives&rft.jtitle=Forum%20of%20mathematics.%20Sigma&rft.au=Ayoub,%20Joseph&rft.date=2022-01-01&rft.volume=10&rft.artnum=e61&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/10.1017/fms.2022.55&rft_dat=%3Cproquest_hal_p%3E2699621914%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699621914&rft_id=info:pmid/&rft_cupid=10_1017_fms_2022_55&rfr_iscdi=true |