Besov Reconstruction

The reconstruction theorem tackles the problem of building a global distribution, on ℝ d or on a manifold, for a given family of sufficiently coherent local approximations. This theorem is a critical tool within Hairer’s theory of Regularity Structures. In this paper, we establish a reconstruction t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2023-12, Vol.59 (4), p.1875-1912
Hauptverfasser: Broux, Lucas, Lee, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1912
container_issue 4
container_start_page 1875
container_title Potential analysis
container_volume 59
creator Broux, Lucas
Lee, David
description The reconstruction theorem tackles the problem of building a global distribution, on ℝ d or on a manifold, for a given family of sufficiently coherent local approximations. This theorem is a critical tool within Hairer’s theory of Regularity Structures. In this paper, we establish a reconstruction theorem in the Besov setting, extending recent results of Caravenna and Zambotti. A Besov reconstruction theorem was first formulated by Hairer and Labbé in the context of regularity structures, exploiting nontrivial results from wavelet analysis. Our calculations follow the more elementary approach of coherent germs due to Caravenna and Zambotti. With this formulation our results are both stated and proved with tools from the theory of distributions without the need of the theory of Regularity Structures. As an application, we present an alternative proof of a (Besov) Young multiplication theorem which does not require the use of para-differential calculus.
doi_str_mv 10.1007/s11118-022-10028-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03902166v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909669122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6797a866218f6e889b3e92e363e47cd26a27084e540ac0e91c18cb04e149b8b63</originalsourceid><addsrcrecordid>eNp9kEFLAzEQRoMoWKs3T54ETx6ik8l2khxrUSsUBFHwFrIx1Za6qcluwX9v6orenEuY8L6P4TF2IuBCAKjLLMpoDoi87Ki52mEDMVLIDZrnXTYAg8SRQOyzg5yXUCCl9IAdX4UcN6cPwccmt6nz7SI2h2xv7lY5HP28Q_Z0c_04mfLZ_e3dZDzjXo5ky0kZ5TQRCj2noLWpZTAYJMlQKf-C5FCBrsKoAuchGOGF9jVUQVSm1jXJITvve9_cyq7T4t2lTxvdwk7HM7v9A2kABdFGFPasZ9cpfnQht3YZu9SU8ywaMERGIBYKe8qnmHMK899aAXZryvambDFlv01ZVUKyD-UCN68h_VX_k_oCxM9nrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909669122</pqid></control><display><type>article</type><title>Besov Reconstruction</title><source>SpringerLink Journals</source><creator>Broux, Lucas ; Lee, David</creator><creatorcontrib>Broux, Lucas ; Lee, David</creatorcontrib><description>The reconstruction theorem tackles the problem of building a global distribution, on ℝ d or on a manifold, for a given family of sufficiently coherent local approximations. This theorem is a critical tool within Hairer’s theory of Regularity Structures. In this paper, we establish a reconstruction theorem in the Besov setting, extending recent results of Caravenna and Zambotti. A Besov reconstruction theorem was first formulated by Hairer and Labbé in the context of regularity structures, exploiting nontrivial results from wavelet analysis. Our calculations follow the more elementary approach of coherent germs due to Caravenna and Zambotti. With this formulation our results are both stated and proved with tools from the theory of distributions without the need of the theory of Regularity Structures. As an application, we present an alternative proof of a (Besov) Young multiplication theorem which does not require the use of para-differential calculus.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10028-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Differential calculus ; Functional Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Probability ; Probability Theory and Stochastic Processes ; Reconstruction ; Regularity ; Theorems ; Wavelet analysis</subject><ispartof>Potential analysis, 2023-12, Vol.59 (4), p.1875-1912</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6797a866218f6e889b3e92e363e47cd26a27084e540ac0e91c18cb04e149b8b63</citedby><cites>FETCH-LOGICAL-c353t-6797a866218f6e889b3e92e363e47cd26a27084e540ac0e91c18cb04e149b8b63</cites><orcidid>0000-0001-9387-3342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-022-10028-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-022-10028-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03902166$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Broux, Lucas</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><title>Besov Reconstruction</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>The reconstruction theorem tackles the problem of building a global distribution, on ℝ d or on a manifold, for a given family of sufficiently coherent local approximations. This theorem is a critical tool within Hairer’s theory of Regularity Structures. In this paper, we establish a reconstruction theorem in the Besov setting, extending recent results of Caravenna and Zambotti. A Besov reconstruction theorem was first formulated by Hairer and Labbé in the context of regularity structures, exploiting nontrivial results from wavelet analysis. Our calculations follow the more elementary approach of coherent germs due to Caravenna and Zambotti. With this formulation our results are both stated and proved with tools from the theory of distributions without the need of the theory of Regularity Structures. As an application, we present an alternative proof of a (Besov) Young multiplication theorem which does not require the use of para-differential calculus.</description><subject>Differential calculus</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reconstruction</subject><subject>Regularity</subject><subject>Theorems</subject><subject>Wavelet analysis</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQRoMoWKs3T54ETx6ik8l2khxrUSsUBFHwFrIx1Za6qcluwX9v6orenEuY8L6P4TF2IuBCAKjLLMpoDoi87Ki52mEDMVLIDZrnXTYAg8SRQOyzg5yXUCCl9IAdX4UcN6cPwccmt6nz7SI2h2xv7lY5HP28Q_Z0c_04mfLZ_e3dZDzjXo5ky0kZ5TQRCj2noLWpZTAYJMlQKf-C5FCBrsKoAuchGOGF9jVUQVSm1jXJITvve9_cyq7T4t2lTxvdwk7HM7v9A2kABdFGFPasZ9cpfnQht3YZu9SU8ywaMERGIBYKe8qnmHMK899aAXZryvambDFlv01ZVUKyD-UCN68h_VX_k_oCxM9nrw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Broux, Lucas</creator><creator>Lee, David</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9387-3342</orcidid></search><sort><creationdate>20231201</creationdate><title>Besov Reconstruction</title><author>Broux, Lucas ; Lee, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6797a866218f6e889b3e92e363e47cd26a27084e540ac0e91c18cb04e149b8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential calculus</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reconstruction</topic><topic>Regularity</topic><topic>Theorems</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broux, Lucas</creatorcontrib><creatorcontrib>Lee, David</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broux, Lucas</au><au>Lee, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Besov Reconstruction</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>4</issue><spage>1875</spage><epage>1912</epage><pages>1875-1912</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>The reconstruction theorem tackles the problem of building a global distribution, on ℝ d or on a manifold, for a given family of sufficiently coherent local approximations. This theorem is a critical tool within Hairer’s theory of Regularity Structures. In this paper, we establish a reconstruction theorem in the Besov setting, extending recent results of Caravenna and Zambotti. A Besov reconstruction theorem was first formulated by Hairer and Labbé in the context of regularity structures, exploiting nontrivial results from wavelet analysis. Our calculations follow the more elementary approach of coherent germs due to Caravenna and Zambotti. With this formulation our results are both stated and proved with tools from the theory of distributions without the need of the theory of Regularity Structures. As an application, we present an alternative proof of a (Besov) Young multiplication theorem which does not require the use of para-differential calculus.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10028-7</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-9387-3342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2023-12, Vol.59 (4), p.1875-1912
issn 0926-2601
1572-929X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03902166v1
source SpringerLink Journals
subjects Differential calculus
Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Potential Theory
Probability
Probability Theory and Stochastic Processes
Reconstruction
Regularity
Theorems
Wavelet analysis
title Besov Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Besov%20Reconstruction&rft.jtitle=Potential%20analysis&rft.au=Broux,%20Lucas&rft.date=2023-12-01&rft.volume=59&rft.issue=4&rft.spage=1875&rft.epage=1912&rft.pages=1875-1912&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10028-7&rft_dat=%3Cproquest_hal_p%3E2909669122%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909669122&rft_id=info:pmid/&rfr_iscdi=true