A Control Variate Method Driven by Diffusion Approximation

In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2022-03, Vol.75 (3), p.455-492
Hauptverfasser: Garnier, Josselin, Mertz, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492
container_issue 3
container_start_page 455
container_title Communications on pure and applied mathematics
container_volume 75
creator Garnier, Josselin
Mertz, Laurent
description In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.
doi_str_mv 10.1002/cpa.21976
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03897282v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620014453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8isWKRdvxoHLOLwqNIRbCo2FqOa6uuQhyctNC_xyUIVqxGMzpz585F6BLDBAOQqW7VhGDBsyM0wiB4ChSTYzQCwJDSjMEpOuu6TWwxy-kI3RRJ6Zs--Dp5VcGp3iRPpl_7VXIb3M40SbVPbp212875JinaNvhP96b62J2jE6vqzlz81DFa3t8ty3m6eH54LItFqinFWWoIrZgVSqxEpmfRErccW15ZDYYQjjNQIHKstbAw07nllFUiB9CwoswyOkbXg-xa1bIN8XjYS6-cnBcLeZgBzQUnOdnhyF4NbLT5vjVdLzd-G5roTpKMxKcZm9E_RR181wVjf2UxyEOKMqYov1OM7HRgP1xt9v-Dsnwpho0vvLxwmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620014453</pqid></control><display><type>article</type><title>A Control Variate Method Driven by Diffusion Approximation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Garnier, Josselin ; Mertz, Laurent</creator><creatorcontrib>Garnier, Josselin ; Mertz, Laurent</creatorcontrib><description>In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21976</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Analysis of PDEs ; Approximation ; Differential equations ; Diffusion ; Mathematics ; Probability ; Random processes ; Statistics ; Variance</subject><ispartof>Communications on pure and applied mathematics, 2022-03, Vol.75 (3), p.455-492</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</citedby><cites>FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03897282$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Mertz, Laurent</creatorcontrib><title>A Control Variate Method Driven by Diffusion Approximation</title><title>Communications on pure and applied mathematics</title><description>In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.</description><subject>Analysis of PDEs</subject><subject>Approximation</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Random processes</subject><subject>Statistics</subject><subject>Variance</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8isWKRdvxoHLOLwqNIRbCo2FqOa6uuQhyctNC_xyUIVqxGMzpz585F6BLDBAOQqW7VhGDBsyM0wiB4ChSTYzQCwJDSjMEpOuu6TWwxy-kI3RRJ6Zs--Dp5VcGp3iRPpl_7VXIb3M40SbVPbp212875JinaNvhP96b62J2jE6vqzlz81DFa3t8ty3m6eH54LItFqinFWWoIrZgVSqxEpmfRErccW15ZDYYQjjNQIHKstbAw07nllFUiB9CwoswyOkbXg-xa1bIN8XjYS6-cnBcLeZgBzQUnOdnhyF4NbLT5vjVdLzd-G5roTpKMxKcZm9E_RR181wVjf2UxyEOKMqYov1OM7HRgP1xt9v-Dsnwpho0vvLxwmQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Garnier, Josselin</creator><creator>Mertz, Laurent</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>202203</creationdate><title>A Control Variate Method Driven by Diffusion Approximation</title><author>Garnier, Josselin ; Mertz, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Approximation</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Random processes</topic><topic>Statistics</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Mertz, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garnier, Josselin</au><au>Mertz, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Control Variate Method Driven by Diffusion Approximation</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>75</volume><issue>3</issue><spage>455</spage><epage>492</epage><pages>455-492</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><doi>10.1002/cpa.21976</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2022-03, Vol.75 (3), p.455-492
issn 0010-3640
1097-0312
language eng
recordid cdi_hal_primary_oai_HAL_hal_03897282v1
source Wiley Online Library Journals Frontfile Complete
subjects Analysis of PDEs
Approximation
Differential equations
Diffusion
Mathematics
Probability
Random processes
Statistics
Variance
title A Control Variate Method Driven by Diffusion Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Control%20Variate%20Method%20Driven%20by%20Diffusion%20Approximation&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Garnier,%20Josselin&rft.date=2022-03&rft.volume=75&rft.issue=3&rft.spage=455&rft.epage=492&rft.pages=455-492&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21976&rft_dat=%3Cproquest_hal_p%3E2620014453%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620014453&rft_id=info:pmid/&rfr_iscdi=true