A Control Variate Method Driven by Diffusion Approximation
In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2022-03, Vol.75 (3), p.455-492 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 3 |
container_start_page | 455 |
container_title | Communications on pure and applied mathematics |
container_volume | 75 |
creator | Garnier, Josselin Mertz, Laurent |
description | In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC. |
doi_str_mv | 10.1002/cpa.21976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03897282v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620014453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8isWKRdvxoHLOLwqNIRbCo2FqOa6uuQhyctNC_xyUIVqxGMzpz585F6BLDBAOQqW7VhGDBsyM0wiB4ChSTYzQCwJDSjMEpOuu6TWwxy-kI3RRJ6Zs--Dp5VcGp3iRPpl_7VXIb3M40SbVPbp212875JinaNvhP96b62J2jE6vqzlz81DFa3t8ty3m6eH54LItFqinFWWoIrZgVSqxEpmfRErccW15ZDYYQjjNQIHKstbAw07nllFUiB9CwoswyOkbXg-xa1bIN8XjYS6-cnBcLeZgBzQUnOdnhyF4NbLT5vjVdLzd-G5roTpKMxKcZm9E_RR181wVjf2UxyEOKMqYov1OM7HRgP1xt9v-Dsnwpho0vvLxwmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620014453</pqid></control><display><type>article</type><title>A Control Variate Method Driven by Diffusion Approximation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Garnier, Josselin ; Mertz, Laurent</creator><creatorcontrib>Garnier, Josselin ; Mertz, Laurent</creatorcontrib><description>In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21976</identifier><language>eng</language><publisher>Melbourne: John Wiley & Sons Australia, Ltd</publisher><subject>Analysis of PDEs ; Approximation ; Differential equations ; Diffusion ; Mathematics ; Probability ; Random processes ; Statistics ; Variance</subject><ispartof>Communications on pure and applied mathematics, 2022-03, Vol.75 (3), p.455-492</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</citedby><cites>FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03897282$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Mertz, Laurent</creatorcontrib><title>A Control Variate Method Driven by Diffusion Approximation</title><title>Communications on pure and applied mathematics</title><description>In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.</description><subject>Analysis of PDEs</subject><subject>Approximation</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Random processes</subject><subject>Statistics</subject><subject>Variance</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8isWKRdvxoHLOLwqNIRbCo2FqOa6uuQhyctNC_xyUIVqxGMzpz585F6BLDBAOQqW7VhGDBsyM0wiB4ChSTYzQCwJDSjMEpOuu6TWwxy-kI3RRJ6Zs--Dp5VcGp3iRPpl_7VXIb3M40SbVPbp212875JinaNvhP96b62J2jE6vqzlz81DFa3t8ty3m6eH54LItFqinFWWoIrZgVSqxEpmfRErccW15ZDYYQjjNQIHKstbAw07nllFUiB9CwoswyOkbXg-xa1bIN8XjYS6-cnBcLeZgBzQUnOdnhyF4NbLT5vjVdLzd-G5roTpKMxKcZm9E_RR181wVjf2UxyEOKMqYov1OM7HRgP1xt9v-Dsnwpho0vvLxwmQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Garnier, Josselin</creator><creator>Mertz, Laurent</creator><general>John Wiley & Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>202203</creationdate><title>A Control Variate Method Driven by Diffusion Approximation</title><author>Garnier, Josselin ; Mertz, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3316-e23b4f9a9d96c50977f71f7bfc0e227160a0981cc9f05c8f734b9800c0d34f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Approximation</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Random processes</topic><topic>Statistics</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Mertz, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garnier, Josselin</au><au>Mertz, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Control Variate Method Driven by Diffusion Approximation</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>75</volume><issue>3</issue><spage>455</spage><epage>492</epage><pages>455-492</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>In this paper we introduce a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation driven by fast mean‐reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples. © 2021 Wiley Periodicals LLC.</abstract><cop>Melbourne</cop><pub>John Wiley & Sons Australia, Ltd</pub><doi>10.1002/cpa.21976</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2022-03, Vol.75 (3), p.455-492 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03897282v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analysis of PDEs Approximation Differential equations Diffusion Mathematics Probability Random processes Statistics Variance |
title | A Control Variate Method Driven by Diffusion Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Control%20Variate%20Method%20Driven%20by%20Diffusion%20Approximation&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Garnier,%20Josselin&rft.date=2022-03&rft.volume=75&rft.issue=3&rft.spage=455&rft.epage=492&rft.pages=455-492&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21976&rft_dat=%3Cproquest_hal_p%3E2620014453%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620014453&rft_id=info:pmid/&rfr_iscdi=true |