Mixture-based estimation of entropy

The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs to be obtained from the data sample itself. A semi-parametric estimate is proposed based on a mixture model approximation of the dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2023-01, Vol.177, p.107582, Article 107582
Hauptverfasser: Robin, Stéphane, Scrucca, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107582
container_title Computational statistics & data analysis
container_volume 177
creator Robin, Stéphane
Scrucca, Luca
description The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs to be obtained from the data sample itself. A semi-parametric estimate is proposed based on a mixture model approximation of the distribution of interest. A Gaussian mixture model is used to illustrate the accuracy and versatility of the proposal, although the estimate can rely on any type of mixture. Performance of the proposed approach is assessed through a series of simulation studies. Two real-life data examples are also provided to illustrate its use.
doi_str_mv 10.1016/j.csda.2022.107582
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03895041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947322001621</els_id><sourcerecordid>2718342930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-fbc7b1e73c405ba108ac95b2700737c4b8b5e24c51a8472dd9951b4606afd8533</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPBix62vvxrsuClFLVCxYueQ5LNYsp2U5PdYr-9WVY8enow_GaYNwhdY5hjwIv77dymSs8JEJIFwSU5QRMsBSkE5eQUTTIkipIJeo4uUtoCAGFCTtDNq__u-ugKo5OrZi51fqc7H9pZqGeu7WLYHy_RWa2b5K5-7xR9PD2-r9bF5u35ZbXcFJZh3BW1scJgJ6hlwI3GILUtuSECQFBhmZGGO8Isx1oyQaqqLDk2bAELXVeSUzpFd2Pup27UPuYi8aiC9mq93KhBAypLDgwfcGZvR3Yfw1efa6udT9Y1jW5d6JMiAkvKSEkho2REbQwpRVf_ZWNQw3pqq4b11LCeGtfLpofR5PLDB--iSta71rrKR2c7VQX_n_0HBtd1kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718342930</pqid></control><display><type>article</type><title>Mixture-based estimation of entropy</title><source>Elsevier ScienceDirect Journals</source><creator>Robin, Stéphane ; Scrucca, Luca</creator><creatorcontrib>Robin, Stéphane ; Scrucca, Luca</creatorcontrib><description>The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs to be obtained from the data sample itself. A semi-parametric estimate is proposed based on a mixture model approximation of the distribution of interest. A Gaussian mixture model is used to illustrate the accuracy and versatility of the proposal, although the estimate can rely on any type of mixture. Performance of the proposed approach is assessed through a series of simulation studies. Two real-life data examples are also provided to illustrate its use.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2022.107582</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>data analysis ; entropy ; Entropy estimation ; Gaussian mixtures ; mathematical theory ; Mathematics ; Mixture models ; Mutual information ; uncertainty</subject><ispartof>Computational statistics &amp; data analysis, 2023-01, Vol.177, p.107582, Article 107582</ispartof><rights>2022 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-fbc7b1e73c405ba108ac95b2700737c4b8b5e24c51a8472dd9951b4606afd8533</citedby><cites>FETCH-LOGICAL-c411t-fbc7b1e73c405ba108ac95b2700737c4b8b5e24c51a8472dd9951b4606afd8533</cites><orcidid>0000-0003-3826-0484 ; 0000-0003-1045-069X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947322001621$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03895041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Robin, Stéphane</creatorcontrib><creatorcontrib>Scrucca, Luca</creatorcontrib><title>Mixture-based estimation of entropy</title><title>Computational statistics &amp; data analysis</title><description>The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs to be obtained from the data sample itself. A semi-parametric estimate is proposed based on a mixture model approximation of the distribution of interest. A Gaussian mixture model is used to illustrate the accuracy and versatility of the proposal, although the estimate can rely on any type of mixture. Performance of the proposed approach is assessed through a series of simulation studies. Two real-life data examples are also provided to illustrate its use.</description><subject>data analysis</subject><subject>entropy</subject><subject>Entropy estimation</subject><subject>Gaussian mixtures</subject><subject>mathematical theory</subject><subject>Mathematics</subject><subject>Mixture models</subject><subject>Mutual information</subject><subject>uncertainty</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwFPBix62vvxrsuClFLVCxYueQ5LNYsp2U5PdYr-9WVY8enow_GaYNwhdY5hjwIv77dymSs8JEJIFwSU5QRMsBSkE5eQUTTIkipIJeo4uUtoCAGFCTtDNq__u-ugKo5OrZi51fqc7H9pZqGeu7WLYHy_RWa2b5K5-7xR9PD2-r9bF5u35ZbXcFJZh3BW1scJgJ6hlwI3GILUtuSECQFBhmZGGO8Isx1oyQaqqLDk2bAELXVeSUzpFd2Pup27UPuYi8aiC9mq93KhBAypLDgwfcGZvR3Yfw1efa6udT9Y1jW5d6JMiAkvKSEkho2REbQwpRVf_ZWNQw3pqq4b11LCeGtfLpofR5PLDB--iSta71rrKR2c7VQX_n_0HBtd1kg</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Robin, Stéphane</creator><creator>Scrucca, Luca</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3826-0484</orcidid><orcidid>https://orcid.org/0000-0003-1045-069X</orcidid></search><sort><creationdate>202301</creationdate><title>Mixture-based estimation of entropy</title><author>Robin, Stéphane ; Scrucca, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-fbc7b1e73c405ba108ac95b2700737c4b8b5e24c51a8472dd9951b4606afd8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>data analysis</topic><topic>entropy</topic><topic>Entropy estimation</topic><topic>Gaussian mixtures</topic><topic>mathematical theory</topic><topic>Mathematics</topic><topic>Mixture models</topic><topic>Mutual information</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robin, Stéphane</creatorcontrib><creatorcontrib>Scrucca, Luca</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robin, Stéphane</au><au>Scrucca, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixture-based estimation of entropy</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2023-01</date><risdate>2023</risdate><volume>177</volume><spage>107582</spage><pages>107582-</pages><artnum>107582</artnum><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs to be obtained from the data sample itself. A semi-parametric estimate is proposed based on a mixture model approximation of the distribution of interest. A Gaussian mixture model is used to illustrate the accuracy and versatility of the proposal, although the estimate can rely on any type of mixture. Performance of the proposed approach is assessed through a series of simulation studies. Two real-life data examples are also provided to illustrate its use.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2022.107582</doi><orcidid>https://orcid.org/0000-0003-3826-0484</orcidid><orcidid>https://orcid.org/0000-0003-1045-069X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2023-01, Vol.177, p.107582, Article 107582
issn 0167-9473
1872-7352
language eng
recordid cdi_hal_primary_oai_HAL_hal_03895041v1
source Elsevier ScienceDirect Journals
subjects data analysis
entropy
Entropy estimation
Gaussian mixtures
mathematical theory
Mathematics
Mixture models
Mutual information
uncertainty
title Mixture-based estimation of entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixture-based%20estimation%20of%20entropy&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Robin,%20St%C3%A9phane&rft.date=2023-01&rft.volume=177&rft.spage=107582&rft.pages=107582-&rft.artnum=107582&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2022.107582&rft_dat=%3Cproquest_hal_p%3E2718342930%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718342930&rft_id=info:pmid/&rft_els_id=S0167947322001621&rfr_iscdi=true