Local Stiffness Effect on Ferromagnetic Response of Nanostructure Arrays in Stretchable Systems

The control of magnetoelastic effects in magnetic media, their improvement or even their minimization according to the intended applications is a current problem. In this work, the effect of the elastic strain on the magnetic properties of Ni60Fe40 continuous films and nanowires deposited on Kapton®...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2019-02, Vol.13 (2), p.n/a
Hauptverfasser: Challab, Nabil, Zighem, Fatih, Faurie, Damien, Haboussi, Mohamed, Belmeguenai, Mohamed, Lupo, Pierpaolo, Adeyeye, Adekunle O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 13
creator Challab, Nabil
Zighem, Fatih
Faurie, Damien
Haboussi, Mohamed
Belmeguenai, Mohamed
Lupo, Pierpaolo
Adeyeye, Adekunle O.
description The control of magnetoelastic effects in magnetic media, their improvement or even their minimization according to the intended applications is a current problem. In this work, the effect of the elastic strain on the magnetic properties of Ni60Fe40 continuous films and nanowires deposited on Kapton® substrates has been investigated. For this purpose, piezoactuation mechanical tests are performed in situ with ferromagnetic resonance measurements. It has been observed that the continuous thin film and the array of nanowires exhibit distinct behaviors in the presence of an elastic strain field. Precisely, the induced magnetoelastic anisotropy is much less pronounced in the case of nanowires. This difference in behavior has been explained/investigated based on finite element simulations. These latter revealed that the average strain transmitted from flexible substrate to magnetic medium is less important in the case of nanowires compared to continuous film. This lack of strain transfer/transmission is related to the relative amount of free surface of the nanostructures combined with a strong mechanical contrast between Ni60Fe40 and Kapton (viz., a deposit relatively much more stiffer than the substrate). This important effect can be exploited in the future by controlling and optimizing geometries of nanostructures. Performed ferromagnetic resonance measurements on continuous films and nanowires deposited on piezoactuated Kapton substrates show different magnetic properties. This difference has been explained by the transmitted strain, computed by finite element, which is less important in the case of nanowires because of the relative amount of free surface.
doi_str_mv 10.1002/pssr.201800509
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03893732v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2177081010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3519-534d8f698bda300a0c8b9c5da3c6d5d63392bf5b8e6d554bff61589e02bf5ba03</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhSMEEqWwMltiYkg5x3Vij1VVKFIFqIHZclybpkrjYLug_nscisrIdHdP33s6vSS5xjDCANld570bZYAZAAV-kgwwy7M0zwo4Pe50fJ5ceL-JCC_GZJCIhVWyQWWojWm192hmjFYB2Rbda-fsVr63OtQKLbXvbOs1sgY9ydb64HYq7JxGE-fk3qO6jSlOB7WWVaNRufdBb_1lcmZk4_XV7xwmb_ez1-k8XTw_PE4ni1QRinlKyXjFTM5ZtZIEQIJiFVc0Hipf0VVOCM8qQyum40nHlTE5poxr-FElkGFye8hdy0Z0rt5KtxdW1mI-WYheA8I4KUj2iSN7c2A7Zz922gexsTvXxvdEhosCGAbcJ44OlHI2NqvNMRaD6AsXfeHiWHg08IPhq270_h9avJTl8s_7DaR0hYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177081010</pqid></control><display><type>article</type><title>Local Stiffness Effect on Ferromagnetic Response of Nanostructure Arrays in Stretchable Systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Challab, Nabil ; Zighem, Fatih ; Faurie, Damien ; Haboussi, Mohamed ; Belmeguenai, Mohamed ; Lupo, Pierpaolo ; Adeyeye, Adekunle O.</creator><creatorcontrib>Challab, Nabil ; Zighem, Fatih ; Faurie, Damien ; Haboussi, Mohamed ; Belmeguenai, Mohamed ; Lupo, Pierpaolo ; Adeyeye, Adekunle O.</creatorcontrib><description>The control of magnetoelastic effects in magnetic media, their improvement or even their minimization according to the intended applications is a current problem. In this work, the effect of the elastic strain on the magnetic properties of Ni60Fe40 continuous films and nanowires deposited on Kapton® substrates has been investigated. For this purpose, piezoactuation mechanical tests are performed in situ with ferromagnetic resonance measurements. It has been observed that the continuous thin film and the array of nanowires exhibit distinct behaviors in the presence of an elastic strain field. Precisely, the induced magnetoelastic anisotropy is much less pronounced in the case of nanowires. This difference in behavior has been explained/investigated based on finite element simulations. These latter revealed that the average strain transmitted from flexible substrate to magnetic medium is less important in the case of nanowires compared to continuous film. This lack of strain transfer/transmission is related to the relative amount of free surface of the nanostructures combined with a strong mechanical contrast between Ni60Fe40 and Kapton (viz., a deposit relatively much more stiffer than the substrate). This important effect can be exploited in the future by controlling and optimizing geometries of nanostructures. Performed ferromagnetic resonance measurements on continuous films and nanowires deposited on piezoactuated Kapton substrates show different magnetic properties. This difference has been explained by the transmitted strain, computed by finite element, which is less important in the case of nanowires because of the relative amount of free surface.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201800509</identifier><language>eng</language><publisher>Berlin: WILEY?VCH Verlag Berlin GmbH</publisher><subject>Elastic anisotropy ; Ferromagnetic materials ; Ferromagnetic resonance ; Finite element method ; flexible systems ; Free surfaces ; in situ piezoactuation ; Kapton (trademark) ; Magnetic properties ; Mechanical tests ; Nanostructure ; Nanowires ; Optimization ; Physics ; Polyimide resins ; Stiffness ; Strain ; Substrates ; Thin films</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2019-02, Vol.13 (2), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3519-534d8f698bda300a0c8b9c5da3c6d5d63392bf5b8e6d554bff61589e02bf5ba03</citedby><cites>FETCH-LOGICAL-c3519-534d8f698bda300a0c8b9c5da3c6d5d63392bf5b8e6d554bff61589e02bf5ba03</cites><orcidid>0000-0003-3392-8238 ; 0000-0001-9724-2468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.201800509$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.201800509$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03893732$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Challab, Nabil</creatorcontrib><creatorcontrib>Zighem, Fatih</creatorcontrib><creatorcontrib>Faurie, Damien</creatorcontrib><creatorcontrib>Haboussi, Mohamed</creatorcontrib><creatorcontrib>Belmeguenai, Mohamed</creatorcontrib><creatorcontrib>Lupo, Pierpaolo</creatorcontrib><creatorcontrib>Adeyeye, Adekunle O.</creatorcontrib><title>Local Stiffness Effect on Ferromagnetic Response of Nanostructure Arrays in Stretchable Systems</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>The control of magnetoelastic effects in magnetic media, their improvement or even their minimization according to the intended applications is a current problem. In this work, the effect of the elastic strain on the magnetic properties of Ni60Fe40 continuous films and nanowires deposited on Kapton® substrates has been investigated. For this purpose, piezoactuation mechanical tests are performed in situ with ferromagnetic resonance measurements. It has been observed that the continuous thin film and the array of nanowires exhibit distinct behaviors in the presence of an elastic strain field. Precisely, the induced magnetoelastic anisotropy is much less pronounced in the case of nanowires. This difference in behavior has been explained/investigated based on finite element simulations. These latter revealed that the average strain transmitted from flexible substrate to magnetic medium is less important in the case of nanowires compared to continuous film. This lack of strain transfer/transmission is related to the relative amount of free surface of the nanostructures combined with a strong mechanical contrast between Ni60Fe40 and Kapton (viz., a deposit relatively much more stiffer than the substrate). This important effect can be exploited in the future by controlling and optimizing geometries of nanostructures. Performed ferromagnetic resonance measurements on continuous films and nanowires deposited on piezoactuated Kapton substrates show different magnetic properties. This difference has been explained by the transmitted strain, computed by finite element, which is less important in the case of nanowires because of the relative amount of free surface.</description><subject>Elastic anisotropy</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Finite element method</subject><subject>flexible systems</subject><subject>Free surfaces</subject><subject>in situ piezoactuation</subject><subject>Kapton (trademark)</subject><subject>Magnetic properties</subject><subject>Mechanical tests</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Optimization</subject><subject>Physics</subject><subject>Polyimide resins</subject><subject>Stiffness</subject><subject>Strain</subject><subject>Substrates</subject><subject>Thin films</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhSMEEqWwMltiYkg5x3Vij1VVKFIFqIHZclybpkrjYLug_nscisrIdHdP33s6vSS5xjDCANld570bZYAZAAV-kgwwy7M0zwo4Pe50fJ5ceL-JCC_GZJCIhVWyQWWojWm192hmjFYB2Rbda-fsVr63OtQKLbXvbOs1sgY9ydb64HYq7JxGE-fk3qO6jSlOB7WWVaNRufdBb_1lcmZk4_XV7xwmb_ez1-k8XTw_PE4ni1QRinlKyXjFTM5ZtZIEQIJiFVc0Hipf0VVOCM8qQyum40nHlTE5poxr-FElkGFye8hdy0Z0rt5KtxdW1mI-WYheA8I4KUj2iSN7c2A7Zz922gexsTvXxvdEhosCGAbcJ44OlHI2NqvNMRaD6AsXfeHiWHg08IPhq270_h9avJTl8s_7DaR0hYU</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Challab, Nabil</creator><creator>Zighem, Fatih</creator><creator>Faurie, Damien</creator><creator>Haboussi, Mohamed</creator><creator>Belmeguenai, Mohamed</creator><creator>Lupo, Pierpaolo</creator><creator>Adeyeye, Adekunle O.</creator><general>WILEY?VCH Verlag Berlin GmbH</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3392-8238</orcidid><orcidid>https://orcid.org/0000-0001-9724-2468</orcidid></search><sort><creationdate>201902</creationdate><title>Local Stiffness Effect on Ferromagnetic Response of Nanostructure Arrays in Stretchable Systems</title><author>Challab, Nabil ; Zighem, Fatih ; Faurie, Damien ; Haboussi, Mohamed ; Belmeguenai, Mohamed ; Lupo, Pierpaolo ; Adeyeye, Adekunle O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3519-534d8f698bda300a0c8b9c5da3c6d5d63392bf5b8e6d554bff61589e02bf5ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Elastic anisotropy</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Finite element method</topic><topic>flexible systems</topic><topic>Free surfaces</topic><topic>in situ piezoactuation</topic><topic>Kapton (trademark)</topic><topic>Magnetic properties</topic><topic>Mechanical tests</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Optimization</topic><topic>Physics</topic><topic>Polyimide resins</topic><topic>Stiffness</topic><topic>Strain</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Challab, Nabil</creatorcontrib><creatorcontrib>Zighem, Fatih</creatorcontrib><creatorcontrib>Faurie, Damien</creatorcontrib><creatorcontrib>Haboussi, Mohamed</creatorcontrib><creatorcontrib>Belmeguenai, Mohamed</creatorcontrib><creatorcontrib>Lupo, Pierpaolo</creatorcontrib><creatorcontrib>Adeyeye, Adekunle O.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Challab, Nabil</au><au>Zighem, Fatih</au><au>Faurie, Damien</au><au>Haboussi, Mohamed</au><au>Belmeguenai, Mohamed</au><au>Lupo, Pierpaolo</au><au>Adeyeye, Adekunle O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Stiffness Effect on Ferromagnetic Response of Nanostructure Arrays in Stretchable Systems</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2019-02</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>The control of magnetoelastic effects in magnetic media, their improvement or even their minimization according to the intended applications is a current problem. In this work, the effect of the elastic strain on the magnetic properties of Ni60Fe40 continuous films and nanowires deposited on Kapton® substrates has been investigated. For this purpose, piezoactuation mechanical tests are performed in situ with ferromagnetic resonance measurements. It has been observed that the continuous thin film and the array of nanowires exhibit distinct behaviors in the presence of an elastic strain field. Precisely, the induced magnetoelastic anisotropy is much less pronounced in the case of nanowires. This difference in behavior has been explained/investigated based on finite element simulations. These latter revealed that the average strain transmitted from flexible substrate to magnetic medium is less important in the case of nanowires compared to continuous film. This lack of strain transfer/transmission is related to the relative amount of free surface of the nanostructures combined with a strong mechanical contrast between Ni60Fe40 and Kapton (viz., a deposit relatively much more stiffer than the substrate). This important effect can be exploited in the future by controlling and optimizing geometries of nanostructures. Performed ferromagnetic resonance measurements on continuous films and nanowires deposited on piezoactuated Kapton substrates show different magnetic properties. This difference has been explained by the transmitted strain, computed by finite element, which is less important in the case of nanowires because of the relative amount of free surface.</abstract><cop>Berlin</cop><pub>WILEY?VCH Verlag Berlin GmbH</pub><doi>10.1002/pssr.201800509</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3392-8238</orcidid><orcidid>https://orcid.org/0000-0001-9724-2468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2019-02, Vol.13 (2), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_hal_primary_oai_HAL_hal_03893732v1
source Wiley Online Library Journals Frontfile Complete
subjects Elastic anisotropy
Ferromagnetic materials
Ferromagnetic resonance
Finite element method
flexible systems
Free surfaces
in situ piezoactuation
Kapton (trademark)
Magnetic properties
Mechanical tests
Nanostructure
Nanowires
Optimization
Physics
Polyimide resins
Stiffness
Strain
Substrates
Thin films
title Local Stiffness Effect on Ferromagnetic Response of Nanostructure Arrays in Stretchable Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Stiffness%20Effect%20on%20Ferromagnetic%20Response%20of%20Nanostructure%20Arrays%20in%20Stretchable%20Systems&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Challab,%20Nabil&rft.date=2019-02&rft.volume=13&rft.issue=2&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201800509&rft_dat=%3Cproquest_hal_p%3E2177081010%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177081010&rft_id=info:pmid/&rfr_iscdi=true