Sparse Bayesian Learning of Explicit Algebraic Reynolds-Stress models for turbulent separated flows
A novel Sparse Bayesian Learning (SBL) framework is introduced for generating stochastic Explicit Algebraic Reynolds Stress (EARSM) closures for the Reynolds-Averaged Navier–Stokes (RANS) equations from high-fidelity data. Building on the recently proposed SpaRTA (Sparse Regression of Turbulent Stre...
Gespeichert in:
Veröffentlicht in: | The International journal of heat and fluid flow 2022-12, Vol.98, p.109047, Article 109047 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!