Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines
Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d -block metal catalysts have been developed in recent years, but even binding of dinitrogen to...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2020-07, Vol.12 (7), p.654-659 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 7 |
container_start_page | 654 |
container_title | Nature chemistry |
container_volume | 12 |
creator | Arnold, Polly L. Ochiai, Tatsumi Lam, Francis Y. T. Kelly, Rory P. Seymour, Megan L. Maron, Laurent |
description | Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful
d
-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an
f
-block metal cation is extremely rare. Here we report
f
-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.
Metallacycles formed from two large, under-coordinated actinide M
IV
cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These
f
-block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine. |
doi_str_mv | 10.1038/s41557-020-0457-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03885963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556539413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EomXhB3BBlrjAIeCJPxIfqwoo0iIucOFieZ1JcZXYxc5W2n_PLCmLhAS-2HrnmfHMvIw9B_EGhOzfVgVad41oRSMUPewDdg6d1o2Syj48vaU4Y09qvRHCaAnmMTuTrTTGGjhn3z7h4qfJh0OYYuA-LDHFAXnwJB_qUvmYCx9IXEq-xsRDTndYasyJL5n7ec4peu7TwCtSbPDlQGpMWJ-yR6OfKj67vzfs6_t3Xy6vmu3nDx8vL7ZN0L1YGgi9B206o4YOxzCqEZXwrRA7Ya0CQJTQCetVT3NCq8Mw9gC7TmAflLJabtjrte53P7nbEmdqwWUf3dXF1h01WlWvrZF3QOyrlb0t-cce6-LmWAPSAhLmfXWttL2Rv86GvfwLvcn7kmgS12pNm6Tm_k8p6Iy1tj1SsFKh5FoLjqc-QbijlW610tGI7mils5Tz4r7yfjfjcMr47R0B7QpUCqVrLH--_nfVn8Vppuc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417699923</pqid></control><display><type>article</type><title>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Arnold, Polly L. ; Ochiai, Tatsumi ; Lam, Francis Y. T. ; Kelly, Rory P. ; Seymour, Megan L. ; Maron, Laurent</creator><creatorcontrib>Arnold, Polly L. ; Ochiai, Tatsumi ; Lam, Francis Y. T. ; Kelly, Rory P. ; Seymour, Megan L. ; Maron, Laurent</creatorcontrib><description>Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful
d
-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an
f
-block metal cation is extremely rare. Here we report
f
-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.
Metallacycles formed from two large, under-coordinated actinide M
IV
cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These
f
-block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-0457-9</identifier><identifier>PMID: 32366961</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/263/406/910 ; 639/638/263/406/939 ; 639/638/263/910 ; 639/638/911/406/910 ; Actinides ; Ambient temperature ; Amines ; Ammonia ; Analytical Chemistry ; Binding ; Biochemistry ; Catalysis ; Catalysts ; Catalytic converters ; Cations ; chemi ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chemists ; Conversion ; Coordination chemistry ; Inorganic Chemistry ; Ligands ; Metal ions ; Organic Chemistry ; Organometallic compounds ; Physical Chemistry ; Protons ; Silanes</subject><ispartof>Nature chemistry, 2020-07, Vol.12 (7), p.654-659</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</citedby><cites>FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</cites><orcidid>0000-0003-2653-8557 ; 0000-0001-6410-5838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32366961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03885963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, Polly L.</creatorcontrib><creatorcontrib>Ochiai, Tatsumi</creatorcontrib><creatorcontrib>Lam, Francis Y. T.</creatorcontrib><creatorcontrib>Kelly, Rory P.</creatorcontrib><creatorcontrib>Seymour, Megan L.</creatorcontrib><creatorcontrib>Maron, Laurent</creatorcontrib><title>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful
d
-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an
f
-block metal cation is extremely rare. Here we report
f
-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.
Metallacycles formed from two large, under-coordinated actinide M
IV
cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These
f
-block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.</description><subject>639/638/263/406/910</subject><subject>639/638/263/406/939</subject><subject>639/638/263/910</subject><subject>639/638/911/406/910</subject><subject>Actinides</subject><subject>Ambient temperature</subject><subject>Amines</subject><subject>Ammonia</subject><subject>Analytical Chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Cations</subject><subject>chemi</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chemists</subject><subject>Conversion</subject><subject>Coordination chemistry</subject><subject>Inorganic Chemistry</subject><subject>Ligands</subject><subject>Metal ions</subject><subject>Organic Chemistry</subject><subject>Organometallic compounds</subject><subject>Physical Chemistry</subject><subject>Protons</subject><subject>Silanes</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EomXhB3BBlrjAIeCJPxIfqwoo0iIucOFieZ1JcZXYxc5W2n_PLCmLhAS-2HrnmfHMvIw9B_EGhOzfVgVad41oRSMUPewDdg6d1o2Syj48vaU4Y09qvRHCaAnmMTuTrTTGGjhn3z7h4qfJh0OYYuA-LDHFAXnwJB_qUvmYCx9IXEq-xsRDTndYasyJL5n7ec4peu7TwCtSbPDlQGpMWJ-yR6OfKj67vzfs6_t3Xy6vmu3nDx8vL7ZN0L1YGgi9B206o4YOxzCqEZXwrRA7Ya0CQJTQCetVT3NCq8Mw9gC7TmAflLJabtjrte53P7nbEmdqwWUf3dXF1h01WlWvrZF3QOyrlb0t-cce6-LmWAPSAhLmfXWttL2Rv86GvfwLvcn7kmgS12pNm6Tm_k8p6Iy1tj1SsFKh5FoLjqc-QbijlW610tGI7mils5Tz4r7yfjfjcMr47R0B7QpUCqVrLH--_nfVn8Vppuc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Arnold, Polly L.</creator><creator>Ochiai, Tatsumi</creator><creator>Lam, Francis Y. T.</creator><creator>Kelly, Rory P.</creator><creator>Seymour, Megan L.</creator><creator>Maron, Laurent</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2653-8557</orcidid><orcidid>https://orcid.org/0000-0001-6410-5838</orcidid></search><sort><creationdate>20200701</creationdate><title>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</title><author>Arnold, Polly L. ; Ochiai, Tatsumi ; Lam, Francis Y. T. ; Kelly, Rory P. ; Seymour, Megan L. ; Maron, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/638/263/406/910</topic><topic>639/638/263/406/939</topic><topic>639/638/263/910</topic><topic>639/638/911/406/910</topic><topic>Actinides</topic><topic>Ambient temperature</topic><topic>Amines</topic><topic>Ammonia</topic><topic>Analytical Chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Cations</topic><topic>chemi</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chemists</topic><topic>Conversion</topic><topic>Coordination chemistry</topic><topic>Inorganic Chemistry</topic><topic>Ligands</topic><topic>Metal ions</topic><topic>Organic Chemistry</topic><topic>Organometallic compounds</topic><topic>Physical Chemistry</topic><topic>Protons</topic><topic>Silanes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Polly L.</creatorcontrib><creatorcontrib>Ochiai, Tatsumi</creatorcontrib><creatorcontrib>Lam, Francis Y. T.</creatorcontrib><creatorcontrib>Kelly, Rory P.</creatorcontrib><creatorcontrib>Seymour, Megan L.</creatorcontrib><creatorcontrib>Maron, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Polly L.</au><au>Ochiai, Tatsumi</au><au>Lam, Francis Y. T.</au><au>Kelly, Rory P.</au><au>Seymour, Megan L.</au><au>Maron, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>654</spage><epage>659</epage><pages>654-659</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful
d
-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an
f
-block metal cation is extremely rare. Here we report
f
-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.
Metallacycles formed from two large, under-coordinated actinide M
IV
cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These
f
-block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32366961</pmid><doi>10.1038/s41557-020-0457-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2653-8557</orcidid><orcidid>https://orcid.org/0000-0001-6410-5838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2020-07, Vol.12 (7), p.654-659 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03885963v1 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/638/263/406/910 639/638/263/406/939 639/638/263/910 639/638/911/406/910 Actinides Ambient temperature Amines Ammonia Analytical Chemistry Binding Biochemistry Catalysis Catalysts Catalytic converters Cations chemi Chemical Sciences Chemistry Chemistry and Materials Science Chemistry/Food Science Chemists Conversion Coordination chemistry Inorganic Chemistry Ligands Metal ions Organic Chemistry Organometallic compounds Physical Chemistry Protons Silanes |
title | Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallacyclic%20actinide%20catalysts%20for%20dinitrogen%20conversion%20to%20ammonia%20and%20secondary%20amines&rft.jtitle=Nature%20chemistry&rft.au=Arnold,%20Polly%20L.&rft.date=2020-07-01&rft.volume=12&rft.issue=7&rft.spage=654&rft.epage=659&rft.pages=654-659&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-0457-9&rft_dat=%3Cproquest_hal_p%3E2556539413%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417699923&rft_id=info:pmid/32366961&rfr_iscdi=true |