Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines

Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d -block metal catalysts have been developed in recent years, but even binding of dinitrogen to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2020-07, Vol.12 (7), p.654-659
Hauptverfasser: Arnold, Polly L., Ochiai, Tatsumi, Lam, Francis Y. T., Kelly, Rory P., Seymour, Megan L., Maron, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 7
container_start_page 654
container_title Nature chemistry
container_volume 12
creator Arnold, Polly L.
Ochiai, Tatsumi
Lam, Francis Y. T.
Kelly, Rory P.
Seymour, Megan L.
Maron, Laurent
description Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d -block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f -block metal cation is extremely rare. Here we report f -block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure. Metallacycles formed from two large, under-coordinated actinide M IV cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These f -block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.
doi_str_mv 10.1038/s41557-020-0457-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03885963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556539413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EomXhB3BBlrjAIeCJPxIfqwoo0iIucOFieZ1JcZXYxc5W2n_PLCmLhAS-2HrnmfHMvIw9B_EGhOzfVgVad41oRSMUPewDdg6d1o2Syj48vaU4Y09qvRHCaAnmMTuTrTTGGjhn3z7h4qfJh0OYYuA-LDHFAXnwJB_qUvmYCx9IXEq-xsRDTndYasyJL5n7ec4peu7TwCtSbPDlQGpMWJ-yR6OfKj67vzfs6_t3Xy6vmu3nDx8vL7ZN0L1YGgi9B206o4YOxzCqEZXwrRA7Ya0CQJTQCetVT3NCq8Mw9gC7TmAflLJabtjrte53P7nbEmdqwWUf3dXF1h01WlWvrZF3QOyrlb0t-cce6-LmWAPSAhLmfXWttL2Rv86GvfwLvcn7kmgS12pNm6Tm_k8p6Iy1tj1SsFKh5FoLjqc-QbijlW610tGI7mils5Tz4r7yfjfjcMr47R0B7QpUCqVrLH--_nfVn8Vppuc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417699923</pqid></control><display><type>article</type><title>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Arnold, Polly L. ; Ochiai, Tatsumi ; Lam, Francis Y. T. ; Kelly, Rory P. ; Seymour, Megan L. ; Maron, Laurent</creator><creatorcontrib>Arnold, Polly L. ; Ochiai, Tatsumi ; Lam, Francis Y. T. ; Kelly, Rory P. ; Seymour, Megan L. ; Maron, Laurent</creatorcontrib><description>Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d -block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f -block metal cation is extremely rare. Here we report f -block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure. Metallacycles formed from two large, under-coordinated actinide M IV cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These f -block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-0457-9</identifier><identifier>PMID: 32366961</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/263/406/910 ; 639/638/263/406/939 ; 639/638/263/910 ; 639/638/911/406/910 ; Actinides ; Ambient temperature ; Amines ; Ammonia ; Analytical Chemistry ; Binding ; Biochemistry ; Catalysis ; Catalysts ; Catalytic converters ; Cations ; chemi ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chemists ; Conversion ; Coordination chemistry ; Inorganic Chemistry ; Ligands ; Metal ions ; Organic Chemistry ; Organometallic compounds ; Physical Chemistry ; Protons ; Silanes</subject><ispartof>Nature chemistry, 2020-07, Vol.12 (7), p.654-659</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</citedby><cites>FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</cites><orcidid>0000-0003-2653-8557 ; 0000-0001-6410-5838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32366961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03885963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, Polly L.</creatorcontrib><creatorcontrib>Ochiai, Tatsumi</creatorcontrib><creatorcontrib>Lam, Francis Y. T.</creatorcontrib><creatorcontrib>Kelly, Rory P.</creatorcontrib><creatorcontrib>Seymour, Megan L.</creatorcontrib><creatorcontrib>Maron, Laurent</creatorcontrib><title>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d -block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f -block metal cation is extremely rare. Here we report f -block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure. Metallacycles formed from two large, under-coordinated actinide M IV cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These f -block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.</description><subject>639/638/263/406/910</subject><subject>639/638/263/406/939</subject><subject>639/638/263/910</subject><subject>639/638/911/406/910</subject><subject>Actinides</subject><subject>Ambient temperature</subject><subject>Amines</subject><subject>Ammonia</subject><subject>Analytical Chemistry</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Cations</subject><subject>chemi</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chemists</subject><subject>Conversion</subject><subject>Coordination chemistry</subject><subject>Inorganic Chemistry</subject><subject>Ligands</subject><subject>Metal ions</subject><subject>Organic Chemistry</subject><subject>Organometallic compounds</subject><subject>Physical Chemistry</subject><subject>Protons</subject><subject>Silanes</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EomXhB3BBlrjAIeCJPxIfqwoo0iIucOFieZ1JcZXYxc5W2n_PLCmLhAS-2HrnmfHMvIw9B_EGhOzfVgVad41oRSMUPewDdg6d1o2Syj48vaU4Y09qvRHCaAnmMTuTrTTGGjhn3z7h4qfJh0OYYuA-LDHFAXnwJB_qUvmYCx9IXEq-xsRDTndYasyJL5n7ec4peu7TwCtSbPDlQGpMWJ-yR6OfKj67vzfs6_t3Xy6vmu3nDx8vL7ZN0L1YGgi9B206o4YOxzCqEZXwrRA7Ya0CQJTQCetVT3NCq8Mw9gC7TmAflLJabtjrte53P7nbEmdqwWUf3dXF1h01WlWvrZF3QOyrlb0t-cce6-LmWAPSAhLmfXWttL2Rv86GvfwLvcn7kmgS12pNm6Tm_k8p6Iy1tj1SsFKh5FoLjqc-QbijlW610tGI7mils5Tz4r7yfjfjcMr47R0B7QpUCqVrLH--_nfVn8Vppuc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Arnold, Polly L.</creator><creator>Ochiai, Tatsumi</creator><creator>Lam, Francis Y. T.</creator><creator>Kelly, Rory P.</creator><creator>Seymour, Megan L.</creator><creator>Maron, Laurent</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2653-8557</orcidid><orcidid>https://orcid.org/0000-0001-6410-5838</orcidid></search><sort><creationdate>20200701</creationdate><title>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</title><author>Arnold, Polly L. ; Ochiai, Tatsumi ; Lam, Francis Y. T. ; Kelly, Rory P. ; Seymour, Megan L. ; Maron, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-1c8a156764d7efcf4fe40a200b099411ee31709a48020125cdf811b70e8c44953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/638/263/406/910</topic><topic>639/638/263/406/939</topic><topic>639/638/263/910</topic><topic>639/638/911/406/910</topic><topic>Actinides</topic><topic>Ambient temperature</topic><topic>Amines</topic><topic>Ammonia</topic><topic>Analytical Chemistry</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Cations</topic><topic>chemi</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chemists</topic><topic>Conversion</topic><topic>Coordination chemistry</topic><topic>Inorganic Chemistry</topic><topic>Ligands</topic><topic>Metal ions</topic><topic>Organic Chemistry</topic><topic>Organometallic compounds</topic><topic>Physical Chemistry</topic><topic>Protons</topic><topic>Silanes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Polly L.</creatorcontrib><creatorcontrib>Ochiai, Tatsumi</creatorcontrib><creatorcontrib>Lam, Francis Y. T.</creatorcontrib><creatorcontrib>Kelly, Rory P.</creatorcontrib><creatorcontrib>Seymour, Megan L.</creatorcontrib><creatorcontrib>Maron, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Polly L.</au><au>Ochiai, Tatsumi</au><au>Lam, Francis Y. T.</au><au>Kelly, Rory P.</au><au>Seymour, Megan L.</au><au>Maron, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>654</spage><epage>659</epage><pages>654-659</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d -block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f -block metal cation is extremely rare. Here we report f -block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure. Metallacycles formed from two large, under-coordinated actinide M IV cations and two rigid arene-bridged aryloxide ligands are capable of binding dinitrogen inside their cavity. These f -block complexes can catalyse the reduction and functionalization of dinitrogen as well as the catalytic conversion of molecular dinitrogen to a secondary silylamine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32366961</pmid><doi>10.1038/s41557-020-0457-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2653-8557</orcidid><orcidid>https://orcid.org/0000-0001-6410-5838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2020-07, Vol.12 (7), p.654-659
issn 1755-4330
1755-4349
language eng
recordid cdi_hal_primary_oai_HAL_hal_03885963v1
source Nature; Alma/SFX Local Collection
subjects 639/638/263/406/910
639/638/263/406/939
639/638/263/910
639/638/911/406/910
Actinides
Ambient temperature
Amines
Ammonia
Analytical Chemistry
Binding
Biochemistry
Catalysis
Catalysts
Catalytic converters
Cations
chemi
Chemical Sciences
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chemists
Conversion
Coordination chemistry
Inorganic Chemistry
Ligands
Metal ions
Organic Chemistry
Organometallic compounds
Physical Chemistry
Protons
Silanes
title Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallacyclic%20actinide%20catalysts%20for%20dinitrogen%20conversion%20to%20ammonia%20and%20secondary%20amines&rft.jtitle=Nature%20chemistry&rft.au=Arnold,%20Polly%20L.&rft.date=2020-07-01&rft.volume=12&rft.issue=7&rft.spage=654&rft.epage=659&rft.pages=654-659&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-0457-9&rft_dat=%3Cproquest_hal_p%3E2556539413%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417699923&rft_id=info:pmid/32366961&rfr_iscdi=true