A subgradient method with non-monotone line search

In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2023-03, Vol.84 (2), p.397-420
Hauptverfasser: Ferreira, O. P., Grapiglia, G. N., Santos, E. M., Souza, J. C. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 2
container_start_page 397
container_title Computational optimization and applications
container_volume 84
creator Ferreira, O. P.
Grapiglia, G. N.
Santos, E. M.
Souza, J. C. O.
description In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild conditions asymptotic convergence results and iteration-complexity bounds are obtained. Preliminary numerical results illustrate the relative efficiency of the proposed method.
doi_str_mv 10.1007/s10589-022-00438-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03880925v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776276978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f6f6aa94adb6463f4ed9cb8dcd69a3b113fab1d52119e270e95609ae9550a663</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOCJw_RSbKbP8dS1AoFL72H7Cbb3dImNdkq-ulNXdGbl3kw_N5j5iF0TeCOAIj7RKCSCgOlGKBkEn-eoAmpBMNUqvIUTUBRjjkAO0cXKW0AQAlGJ4jOinSo19HY3vmh2LmhC7Z474eu8MHjXfBhCN4V2z6P5Exsukt01pptclc_OkWrx4fVfIGXL0_P89kSN6yUA255y41RpbE1LzlrS2dVU0vbWK4MqwlhramJrSghylEBTlUclMlSgeGcTdHtGNuZrd7Hfmfihw6m14vZUh93wKTMb1VvJLM3I7uP4fXg0qA34RB9vk5TITgVXAmZKTpSTQwpRdf-xhLQxxr1WKPONervGvVnNrHRlDLs1y7-Rf_j-gJmOHRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776276978</pqid></control><display><type>article</type><title>A subgradient method with non-monotone line search</title><source>Business Source Complete</source><source>SpringerNature Journals</source><creator>Ferreira, O. P. ; Grapiglia, G. N. ; Santos, E. M. ; Souza, J. C. O.</creator><creatorcontrib>Ferreira, O. P. ; Grapiglia, G. N. ; Santos, E. M. ; Souza, J. C. O.</creatorcontrib><description>In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild conditions asymptotic convergence results and iteration-complexity bounds are obtained. Preliminary numerical results illustrate the relative efficiency of the proposed method.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-022-00438-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Convex analysis ; Convex and Discrete Geometry ; Economics and Finance ; Humanities and Social Sciences ; Iterative methods ; Management Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Statistics</subject><ispartof>Computational optimization and applications, 2023-03, Vol.84 (2), p.397-420</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-f6f6aa94adb6463f4ed9cb8dcd69a3b113fab1d52119e270e95609ae9550a663</cites><orcidid>0000-0002-5758-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-022-00438-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-022-00438-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-03880925$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, O. P.</creatorcontrib><creatorcontrib>Grapiglia, G. N.</creatorcontrib><creatorcontrib>Santos, E. M.</creatorcontrib><creatorcontrib>Souza, J. C. O.</creatorcontrib><title>A subgradient method with non-monotone line search</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild conditions asymptotic convergence results and iteration-complexity bounds are obtained. Preliminary numerical results illustrate the relative efficiency of the proposed method.</description><subject>Convex analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Economics and Finance</subject><subject>Humanities and Social Sciences</subject><subject>Iterative methods</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOCJw_RSbKbP8dS1AoFL72H7Cbb3dImNdkq-ulNXdGbl3kw_N5j5iF0TeCOAIj7RKCSCgOlGKBkEn-eoAmpBMNUqvIUTUBRjjkAO0cXKW0AQAlGJ4jOinSo19HY3vmh2LmhC7Z474eu8MHjXfBhCN4V2z6P5Exsukt01pptclc_OkWrx4fVfIGXL0_P89kSN6yUA255y41RpbE1LzlrS2dVU0vbWK4MqwlhramJrSghylEBTlUclMlSgeGcTdHtGNuZrd7Hfmfihw6m14vZUh93wKTMb1VvJLM3I7uP4fXg0qA34RB9vk5TITgVXAmZKTpSTQwpRdf-xhLQxxr1WKPONervGvVnNrHRlDLs1y7-Rf_j-gJmOHRo</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ferreira, O. P.</creator><creator>Grapiglia, G. N.</creator><creator>Santos, E. M.</creator><creator>Souza, J. C. O.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5758-0320</orcidid></search><sort><creationdate>20230301</creationdate><title>A subgradient method with non-monotone line search</title><author>Ferreira, O. P. ; Grapiglia, G. N. ; Santos, E. M. ; Souza, J. C. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f6f6aa94adb6463f4ed9cb8dcd69a3b113fab1d52119e270e95609ae9550a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convex analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Economics and Finance</topic><topic>Humanities and Social Sciences</topic><topic>Iterative methods</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, O. P.</creatorcontrib><creatorcontrib>Grapiglia, G. N.</creatorcontrib><creatorcontrib>Santos, E. M.</creatorcontrib><creatorcontrib>Souza, J. C. O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, O. P.</au><au>Grapiglia, G. N.</au><au>Santos, E. M.</au><au>Souza, J. C. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subgradient method with non-monotone line search</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>84</volume><issue>2</issue><spage>397</spage><epage>420</epage><pages>397-420</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild conditions asymptotic convergence results and iteration-complexity bounds are obtained. Preliminary numerical results illustrate the relative efficiency of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-022-00438-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5758-0320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2023-03, Vol.84 (2), p.397-420
issn 0926-6003
1573-2894
language eng
recordid cdi_hal_primary_oai_HAL_hal_03880925v1
source Business Source Complete; SpringerNature Journals
subjects Convex analysis
Convex and Discrete Geometry
Economics and Finance
Humanities and Social Sciences
Iterative methods
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
title A subgradient method with non-monotone line search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subgradient%20method%20with%20non-monotone%20line%20search&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Ferreira,%20O.%20P.&rft.date=2023-03-01&rft.volume=84&rft.issue=2&rft.spage=397&rft.epage=420&rft.pages=397-420&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-022-00438-z&rft_dat=%3Cproquest_hal_p%3E2776276978%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776276978&rft_id=info:pmid/&rfr_iscdi=true