A Cubic Vertex-Kernel for Trivially Perfect Editing
We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = ( V , E ) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2023-04, Vol.85 (4), p.1091-1110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 4 |
container_start_page | 1091 |
container_title | Algorithmica |
container_volume | 85 |
creator | Dumas, Maël Perez, Anthony Todinca, Ioan |
description | We consider the
Trivially Perfect Editing
problem, where one is given an undirected graph
G
=
(
V
,
E
)
and a parameter
k
∈
N
and seeks to
edit
(add or delete) at most
k
edges from
G
to obtain a trivially perfect graph. The related
Trivially Perfect Completion
and
Trivially Perfect Deletion
problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007.
https://doi.org/10.1007/978-3-540-77120-3_79
; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided
O
(
k
7
)
vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for
Trivially Perfect Completion
by Bathie et al. (Algorithmica 1–27, 2022). |
doi_str_mv | 10.1007/s00453-022-01070-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03877563v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792549363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-537f7e73b5f9aad56c45877708040279e6c108a89ec7dc357b76d07f8cec2c723</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMTEYzrGdS8aqKhRRCYbCarmOU1yFpNhpRf89DkGwMZ3u9L33To-QSwY3DABvA4CQnEKaUmCAQPkRGTHB4yoFOyYjYJhTkTE8JWchbABYikU2InySTHcrZ5JX6zv7SR-tb2ydVK1Plt7tna7rQ_JsfWVNl8xK17lmfU5OKl0He_Ezx-Tlbraczuni6f5hOllQw0F0VHKs0CJfyarQupSZETJHRMhBQEy3mWGQ67ywBkvDJa4wKwGr3FiTGkz5mFwPvm-6Vlvv3rU_qFY7NZ8sVH8DHv1kxvcsslcDu_Xtx86GTm3anW_ieypGpVIUPOORSgfK-DYEb6tfWwaqL1INRapYpPouUvUiPohChJu19X_W_6i-AAkScog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792549363</pqid></control><display><type>article</type><title>A Cubic Vertex-Kernel for Trivially Perfect Editing</title><source>SpringerLink_现刊</source><creator>Dumas, Maël ; Perez, Anthony ; Todinca, Ioan</creator><creatorcontrib>Dumas, Maël ; Perez, Anthony ; Todinca, Ioan</creatorcontrib><description>We consider the
Trivially Perfect Editing
problem, where one is given an undirected graph
G
=
(
V
,
E
)
and a parameter
k
∈
N
and seeks to
edit
(add or delete) at most
k
edges from
G
to obtain a trivially perfect graph. The related
Trivially Perfect Completion
and
Trivially Perfect Deletion
problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007.
https://doi.org/10.1007/978-3-540-77120-3_79
; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided
O
(
k
7
)
vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for
Trivially Perfect Completion
by Bathie et al. (Algorithmica 1–27, 2022).</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-022-01070-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Algorithms ; Data Structures and Information Theory ; Editing ; Graph theory ; Kernels ; Mathematics of Computing ; Network analysis ; Parameters ; Polynomials ; Social networks ; Theory of Computation</subject><ispartof>Algorithmica, 2023-04, Vol.85 (4), p.1091-1110</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-537f7e73b5f9aad56c45877708040279e6c108a89ec7dc357b76d07f8cec2c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-022-01070-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-022-01070-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03877563$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumas, Maël</creatorcontrib><creatorcontrib>Perez, Anthony</creatorcontrib><creatorcontrib>Todinca, Ioan</creatorcontrib><title>A Cubic Vertex-Kernel for Trivially Perfect Editing</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We consider the
Trivially Perfect Editing
problem, where one is given an undirected graph
G
=
(
V
,
E
)
and a parameter
k
∈
N
and seeks to
edit
(add or delete) at most
k
edges from
G
to obtain a trivially perfect graph. The related
Trivially Perfect Completion
and
Trivially Perfect Deletion
problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007.
https://doi.org/10.1007/978-3-540-77120-3_79
; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided
O
(
k
7
)
vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for
Trivially Perfect Completion
by Bathie et al. (Algorithmica 1–27, 2022).</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Editing</subject><subject>Graph theory</subject><subject>Kernels</subject><subject>Mathematics of Computing</subject><subject>Network analysis</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Social networks</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMTEYzrGdS8aqKhRRCYbCarmOU1yFpNhpRf89DkGwMZ3u9L33To-QSwY3DABvA4CQnEKaUmCAQPkRGTHB4yoFOyYjYJhTkTE8JWchbABYikU2InySTHcrZ5JX6zv7SR-tb2ydVK1Plt7tna7rQ_JsfWVNl8xK17lmfU5OKl0He_Ezx-Tlbraczuni6f5hOllQw0F0VHKs0CJfyarQupSZETJHRMhBQEy3mWGQ67ywBkvDJa4wKwGr3FiTGkz5mFwPvm-6Vlvv3rU_qFY7NZ8sVH8DHv1kxvcsslcDu_Xtx86GTm3anW_ieypGpVIUPOORSgfK-DYEb6tfWwaqL1INRapYpPouUvUiPohChJu19X_W_6i-AAkScog</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Dumas, Maël</creator><creator>Perez, Anthony</creator><creator>Todinca, Ioan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20230401</creationdate><title>A Cubic Vertex-Kernel for Trivially Perfect Editing</title><author>Dumas, Maël ; Perez, Anthony ; Todinca, Ioan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-537f7e73b5f9aad56c45877708040279e6c108a89ec7dc357b76d07f8cec2c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Editing</topic><topic>Graph theory</topic><topic>Kernels</topic><topic>Mathematics of Computing</topic><topic>Network analysis</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Social networks</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumas, Maël</creatorcontrib><creatorcontrib>Perez, Anthony</creatorcontrib><creatorcontrib>Todinca, Ioan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumas, Maël</au><au>Perez, Anthony</au><au>Todinca, Ioan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cubic Vertex-Kernel for Trivially Perfect Editing</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>85</volume><issue>4</issue><spage>1091</spage><epage>1110</epage><pages>1091-1110</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We consider the
Trivially Perfect Editing
problem, where one is given an undirected graph
G
=
(
V
,
E
)
and a parameter
k
∈
N
and seeks to
edit
(add or delete) at most
k
edges from
G
to obtain a trivially perfect graph. The related
Trivially Perfect Completion
and
Trivially Perfect Deletion
problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007.
https://doi.org/10.1007/978-3-540-77120-3_79
; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided
O
(
k
7
)
vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for
Trivially Perfect Completion
by Bathie et al. (Algorithmica 1–27, 2022).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-022-01070-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2023-04, Vol.85 (4), p.1091-1110 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03877563v1 |
source | SpringerLink_现刊 |
subjects | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Algorithms Data Structures and Information Theory Editing Graph theory Kernels Mathematics of Computing Network analysis Parameters Polynomials Social networks Theory of Computation |
title | A Cubic Vertex-Kernel for Trivially Perfect Editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cubic%20Vertex-Kernel%20for%20Trivially%20Perfect%20Editing&rft.jtitle=Algorithmica&rft.au=Dumas,%20Ma%C3%ABl&rft.date=2023-04-01&rft.volume=85&rft.issue=4&rft.spage=1091&rft.epage=1110&rft.pages=1091-1110&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-022-01070-3&rft_dat=%3Cproquest_hal_p%3E2792549363%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792549363&rft_id=info:pmid/&rfr_iscdi=true |