A Cubic Vertex-Kernel for Trivially Perfect Editing

We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = ( V , E ) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2023-04, Vol.85 (4), p.1091-1110
Hauptverfasser: Dumas, Maël, Perez, Anthony, Todinca, Ioan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 4
container_start_page 1091
container_title Algorithmica
container_volume 85
creator Dumas, Maël
Perez, Anthony
Todinca, Ioan
description We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = ( V , E ) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007. https://doi.org/10.1007/978-3-540-77120-3_79 ; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided O ( k 7 ) vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for Trivially Perfect Completion by Bathie et al. (Algorithmica 1–27, 2022).
doi_str_mv 10.1007/s00453-022-01070-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03877563v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792549363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-537f7e73b5f9aad56c45877708040279e6c108a89ec7dc357b76d07f8cec2c723</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMTEYzrGdS8aqKhRRCYbCarmOU1yFpNhpRf89DkGwMZ3u9L33To-QSwY3DABvA4CQnEKaUmCAQPkRGTHB4yoFOyYjYJhTkTE8JWchbABYikU2InySTHcrZ5JX6zv7SR-tb2ydVK1Plt7tna7rQ_JsfWVNl8xK17lmfU5OKl0He_Ezx-Tlbraczuni6f5hOllQw0F0VHKs0CJfyarQupSZETJHRMhBQEy3mWGQ67ywBkvDJa4wKwGr3FiTGkz5mFwPvm-6Vlvv3rU_qFY7NZ8sVH8DHv1kxvcsslcDu_Xtx86GTm3anW_ieypGpVIUPOORSgfK-DYEb6tfWwaqL1INRapYpPouUvUiPohChJu19X_W_6i-AAkScog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792549363</pqid></control><display><type>article</type><title>A Cubic Vertex-Kernel for Trivially Perfect Editing</title><source>SpringerLink_现刊</source><creator>Dumas, Maël ; Perez, Anthony ; Todinca, Ioan</creator><creatorcontrib>Dumas, Maël ; Perez, Anthony ; Todinca, Ioan</creatorcontrib><description>We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = ( V , E ) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007. https://doi.org/10.1007/978-3-540-77120-3_79 ; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided O ( k 7 ) vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for Trivially Perfect Completion by Bathie et al. (Algorithmica 1–27, 2022).</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-022-01070-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Algorithms ; Data Structures and Information Theory ; Editing ; Graph theory ; Kernels ; Mathematics of Computing ; Network analysis ; Parameters ; Polynomials ; Social networks ; Theory of Computation</subject><ispartof>Algorithmica, 2023-04, Vol.85 (4), p.1091-1110</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-537f7e73b5f9aad56c45877708040279e6c108a89ec7dc357b76d07f8cec2c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-022-01070-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-022-01070-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03877563$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumas, Maël</creatorcontrib><creatorcontrib>Perez, Anthony</creatorcontrib><creatorcontrib>Todinca, Ioan</creatorcontrib><title>A Cubic Vertex-Kernel for Trivially Perfect Editing</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = ( V , E ) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007. https://doi.org/10.1007/978-3-540-77120-3_79 ; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided O ( k 7 ) vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for Trivially Perfect Completion by Bathie et al. (Algorithmica 1–27, 2022).</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Editing</subject><subject>Graph theory</subject><subject>Kernels</subject><subject>Mathematics of Computing</subject><subject>Network analysis</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Social networks</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMTEYzrGdS8aqKhRRCYbCarmOU1yFpNhpRf89DkGwMZ3u9L33To-QSwY3DABvA4CQnEKaUmCAQPkRGTHB4yoFOyYjYJhTkTE8JWchbABYikU2InySTHcrZ5JX6zv7SR-tb2ydVK1Plt7tna7rQ_JsfWVNl8xK17lmfU5OKl0He_Ezx-Tlbraczuni6f5hOllQw0F0VHKs0CJfyarQupSZETJHRMhBQEy3mWGQ67ywBkvDJa4wKwGr3FiTGkz5mFwPvm-6Vlvv3rU_qFY7NZ8sVH8DHv1kxvcsslcDu_Xtx86GTm3anW_ieypGpVIUPOORSgfK-DYEb6tfWwaqL1INRapYpPouUvUiPohChJu19X_W_6i-AAkScog</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Dumas, Maël</creator><creator>Perez, Anthony</creator><creator>Todinca, Ioan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20230401</creationdate><title>A Cubic Vertex-Kernel for Trivially Perfect Editing</title><author>Dumas, Maël ; Perez, Anthony ; Todinca, Ioan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-537f7e73b5f9aad56c45877708040279e6c108a89ec7dc357b76d07f8cec2c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Editing</topic><topic>Graph theory</topic><topic>Kernels</topic><topic>Mathematics of Computing</topic><topic>Network analysis</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Social networks</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumas, Maël</creatorcontrib><creatorcontrib>Perez, Anthony</creatorcontrib><creatorcontrib>Todinca, Ioan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumas, Maël</au><au>Perez, Anthony</au><au>Todinca, Ioan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cubic Vertex-Kernel for Trivially Perfect Editing</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>85</volume><issue>4</issue><spage>1091</spage><epage>1110</epage><pages>1091-1110</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = ( V , E ) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007. https://doi.org/10.1007/978-3-540-77120-3_79 ; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided O ( k 7 ) vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for Trivially Perfect Completion by Bathie et al. (Algorithmica 1–27, 2022).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-022-01070-3</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2023-04, Vol.85 (4), p.1091-1110
issn 0178-4617
1432-0541
language eng
recordid cdi_hal_primary_oai_HAL_hal_03877563v1
source SpringerLink_现刊
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Algorithms
Data Structures and Information Theory
Editing
Graph theory
Kernels
Mathematics of Computing
Network analysis
Parameters
Polynomials
Social networks
Theory of Computation
title A Cubic Vertex-Kernel for Trivially Perfect Editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cubic%20Vertex-Kernel%20for%20Trivially%20Perfect%20Editing&rft.jtitle=Algorithmica&rft.au=Dumas,%20Ma%C3%ABl&rft.date=2023-04-01&rft.volume=85&rft.issue=4&rft.spage=1091&rft.epage=1110&rft.pages=1091-1110&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-022-01070-3&rft_dat=%3Cproquest_hal_p%3E2792549363%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792549363&rft_id=info:pmid/&rfr_iscdi=true