A generalization of unaimed fire Lanchester’s model in multi-battle warfare

The classical Lanchester’s model is shortly reviewed and analysed, with particular attention to the critical issues that intrinsically arise from the mathematical formalization of the problem. We then generalize a particular version of such a model describing the dynamics of warfare when three or mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operational research 2023-06, Vol.23 (2), p.1-19, Article 38
Hauptverfasser: Cangiotti, N., Capolli, M., Sensi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 2
container_start_page 1
container_title Operational research
container_volume 23
creator Cangiotti, N.
Capolli, M.
Sensi, M.
description The classical Lanchester’s model is shortly reviewed and analysed, with particular attention to the critical issues that intrinsically arise from the mathematical formalization of the problem. We then generalize a particular version of such a model describing the dynamics of warfare when three or more armies are involved in the conflict. Several numerical simulations are provided.
doi_str_mv 10.1007/s12351-023-00776-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03874766v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821749336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-9e9969d38f4415846c0371cf801df3a32b1d9a8ef65bc1ec362e269a2d8da7c93</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhSMEEgj6AkyWmBgM_kn8M1YVUKQiFpgt17luXaUJ2CkIJl6D1-NJcAmiG17s6_udY99TFKeUXFBC5GWijFcUE8ZxLqXAaq84okoITCtS7eczJRozVanDYpTSiuTFmVSlOiruxmgBLUTbhHfbh65FnUeb1oY11MiHCGhmW7eE1EP8-vhMaN3V0KDQovWm6QOe275vAL3a6G2Ek-LA2ybB6Hc_Lh6vrx4mUzy7v7mdjGfYlVXZYw1aC11z5cuSVqoUjnBJnVeE1p5bzua01laBF9XcUXBcMGBCW1ar2kqn-XFxPvgubWOeYljb-GY6G8x0PDPbO8KVLKUQLzSzZwP7FLvnTR7ErLpNbPP3DFOMylJzLjLFBsrFLqUI_s-WErNN2Qwpm5yy-UnZqCxCgwhc14a0k6hKKimJ3iJ8QFJutguIu9f_Mf4GcmKJWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821749336</pqid></control><display><type>article</type><title>A generalization of unaimed fire Lanchester’s model in multi-battle warfare</title><source>Springer Nature - Complete Springer Journals</source><creator>Cangiotti, N. ; Capolli, M. ; Sensi, M.</creator><creatorcontrib>Cangiotti, N. ; Capolli, M. ; Sensi, M.</creatorcontrib><description>The classical Lanchester’s model is shortly reviewed and analysed, with particular attention to the critical issues that intrinsically arise from the mathematical formalization of the problem. We then generalize a particular version of such a model describing the dynamics of warfare when three or more armies are involved in the conflict. Several numerical simulations are provided.</description><identifier>ISSN: 1109-2858</identifier><identifier>EISSN: 1866-1505</identifier><identifier>DOI: 10.1007/s12351-023-00776-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Armed forces ; Business and Management ; Computational Intelligence ; Management Science ; Mathematical models ; Mathematics ; Operations Research ; Operations Research/Decision Theory ; Ordinary differential equations ; Original Paper ; Warfare</subject><ispartof>Operational research, 2023-06, Vol.23 (2), p.1-19, Article 38</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-9e9969d38f4415846c0371cf801df3a32b1d9a8ef65bc1ec362e269a2d8da7c93</citedby><cites>FETCH-LOGICAL-c454t-9e9969d38f4415846c0371cf801df3a32b1d9a8ef65bc1ec362e269a2d8da7c93</cites><orcidid>0000-0003-2200-446X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12351-023-00776-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12351-023-00776-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03874766$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cangiotti, N.</creatorcontrib><creatorcontrib>Capolli, M.</creatorcontrib><creatorcontrib>Sensi, M.</creatorcontrib><title>A generalization of unaimed fire Lanchester’s model in multi-battle warfare</title><title>Operational research</title><addtitle>Oper Res Int J</addtitle><description>The classical Lanchester’s model is shortly reviewed and analysed, with particular attention to the critical issues that intrinsically arise from the mathematical formalization of the problem. We then generalize a particular version of such a model describing the dynamics of warfare when three or more armies are involved in the conflict. Several numerical simulations are provided.</description><subject>Applied mathematics</subject><subject>Armed forces</subject><subject>Business and Management</subject><subject>Computational Intelligence</subject><subject>Management Science</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Warfare</subject><issn>1109-2858</issn><issn>1866-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kL1OwzAUhSMEEgj6AkyWmBgM_kn8M1YVUKQiFpgt17luXaUJ2CkIJl6D1-NJcAmiG17s6_udY99TFKeUXFBC5GWijFcUE8ZxLqXAaq84okoITCtS7eczJRozVanDYpTSiuTFmVSlOiruxmgBLUTbhHfbh65FnUeb1oY11MiHCGhmW7eE1EP8-vhMaN3V0KDQovWm6QOe275vAL3a6G2Ek-LA2ybB6Hc_Lh6vrx4mUzy7v7mdjGfYlVXZYw1aC11z5cuSVqoUjnBJnVeE1p5bzua01laBF9XcUXBcMGBCW1ar2kqn-XFxPvgubWOeYljb-GY6G8x0PDPbO8KVLKUQLzSzZwP7FLvnTR7ErLpNbPP3DFOMylJzLjLFBsrFLqUI_s-WErNN2Qwpm5yy-UnZqCxCgwhc14a0k6hKKimJ3iJ8QFJutguIu9f_Mf4GcmKJWA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Cangiotti, N.</creator><creator>Capolli, M.</creator><creator>Sensi, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2200-446X</orcidid></search><sort><creationdate>20230601</creationdate><title>A generalization of unaimed fire Lanchester’s model in multi-battle warfare</title><author>Cangiotti, N. ; Capolli, M. ; Sensi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-9e9969d38f4415846c0371cf801df3a32b1d9a8ef65bc1ec362e269a2d8da7c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Armed forces</topic><topic>Business and Management</topic><topic>Computational Intelligence</topic><topic>Management Science</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Warfare</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cangiotti, N.</creatorcontrib><creatorcontrib>Capolli, M.</creatorcontrib><creatorcontrib>Sensi, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cangiotti, N.</au><au>Capolli, M.</au><au>Sensi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalization of unaimed fire Lanchester’s model in multi-battle warfare</atitle><jtitle>Operational research</jtitle><stitle>Oper Res Int J</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>23</volume><issue>2</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>38</artnum><issn>1109-2858</issn><eissn>1866-1505</eissn><abstract>The classical Lanchester’s model is shortly reviewed and analysed, with particular attention to the critical issues that intrinsically arise from the mathematical formalization of the problem. We then generalize a particular version of such a model describing the dynamics of warfare when three or more armies are involved in the conflict. Several numerical simulations are provided.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12351-023-00776-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2200-446X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1109-2858
ispartof Operational research, 2023-06, Vol.23 (2), p.1-19, Article 38
issn 1109-2858
1866-1505
language eng
recordid cdi_hal_primary_oai_HAL_hal_03874766v1
source Springer Nature - Complete Springer Journals
subjects Applied mathematics
Armed forces
Business and Management
Computational Intelligence
Management Science
Mathematical models
Mathematics
Operations Research
Operations Research/Decision Theory
Ordinary differential equations
Original Paper
Warfare
title A generalization of unaimed fire Lanchester’s model in multi-battle warfare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalization%20of%20unaimed%20fire%20Lanchester%E2%80%99s%20model%20in%20multi-battle%20warfare&rft.jtitle=Operational%20research&rft.au=Cangiotti,%20N.&rft.date=2023-06-01&rft.volume=23&rft.issue=2&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=38&rft.issn=1109-2858&rft.eissn=1866-1505&rft_id=info:doi/10.1007/s12351-023-00776-8&rft_dat=%3Cproquest_hal_p%3E2821749336%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821749336&rft_id=info:pmid/&rfr_iscdi=true